
A 2030 Roadmap for Software Engineering

MAURO PEZZÈ, Università della Svizzera italiana, Lugano, Switzerland, Università degli Studi di
Milano-Bicocca, Milan, Italy, and Constructor University, Schaffhausen, Switzerland
SILVIA ABRAHÃO, Universitat Politecnica de Valencia, Valencia, Spain
BIRGIT PENZENSTADLER, Chalmers University of Technology, Gothenburg, Sweden
DENYS POSHYVANYK, William & Mary, Williamsburg, VA, USA
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore, Singapore
TAO YUE, Beihang University, Beijing, China

The landscape of software engineering has dramatically changed in recent years. The impressive advances
of artificial intelligence are just the latest and most disruptive innovation that has remarkably changed
the software engineering research and practice. This special issue shares a roadmap to guide the software
engineering community in this confused era. This roadmap is the outcome of a 2-day intensive discussion
at the 2030 Software Engineering workshop. The roadmap spotlights and discusses seven main landmarks
in the new software engineering landscape: artificial intelligence for software engineering, human aspects
of software engineering, software security, verification and validation, sustainable software engineering,
automatic programming, and quantum software engineering. This editorial summarizes the core aspects
discussed in the 37 papers that comprise the seven sections of the special issue and guides the interested
readers throughout the issue. This roadmap is a living body that we will refine with follow-up workshops that
will update the roadmap for a series of forthcoming ACM TOSEM special issues.

CCS Concepts: • Software and its engineering→ Requirements analysis; Software design engineering;
Automatic programming; Software defect analysis; Formal software verification; Programming
teams; Documentation; Software evolution;

Additional Key Words and Phrases: A roadmap for software engineering, AI and software engineering, Human
factor in software engineering, Automatic Programming, Sustainable software engineering, Quantum software
engineering, AI for verification and validation, security and software engineering, generative AI for software
engineering, Large language models for software engineering

Mauro Pezzè was supported by the Swiss National Foundation under grant SNF 200021_215487 (A-Test); Silvia Abrahão was
supported by the State Research Agency under grant PID2022-140106NB-I00 (UCI-Adapt) and Generalitat Valenciana under
grant CIAICO/2021/303 (AKILA); Birgit Penzenstadler thanks the Software Center for project #60 Towards a sustainable
future; and Denys Poshyvanyk’s research has been supported in part by the NSF CCF-234635, CCF-2311469, CNS-2132281,
and CCF-1955853 grants. Abhik Roychoudhury’s work was partially supported by a Singapore Ministry of Education (MoE)
Tier3 grant MOE-MOET32021-0001; Tao Yue was supported by the State Key Laboratory of Complex & Critical Software
Environment (SKLCCSE, grant No. CCSE-2024ZX-01) and the Fundamental Research Funds for the Central Universities.
Authors’ Contact Information: Mauro Pezzè (corresponding author), Università della Svizzera italiana, Lugano, Switzerland,
Università degli Studi di Milano-Bicocca, Milan, Italy, and Constructor University, Schaffhausen, Switzerland; e-mail:
mauro.pezze@usi.ch; Silvia Abrahão, Universitat Politecnica de Valencia, Valencia, Spain; e-mail: sabrahao@dsic.upv.es;
Birgit Penzenstadler, Chalmers University of Technology, Gothenburg, Sweden; e-mail: birgitp@chalmers.se; Denys
Poshyvanyk, William & Mary, Williamsburg, VA, USA; e-mail: dposhyvanyk@wm.edu; Abhik Roychoudhury, National
University of Singapore, Singapore, Singapore; e-mail: abhik@comp.nus.edu.sg; Tao Yue, Beihang University, Beijing,
China; e-mail: taoyue@gmail.com.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7392/2025/5-ART118
https://doi.org/10.1145/3731559

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://orcid.org/0000-0001-5193-7379
https://orcid.org/0000-0003-3580-2014
https://orcid.org/0000-0002-5771-0455
https://orcid.org/0000-0002-5626-7586
https://orcid.org/0000-0002-7127-1137
https://orcid.org/0000-0003-3262-5577
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731559
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731559&domain=pdf&date_stamp=2025-05-26

118:2 M. Pezzè et al.

ACM Reference format:
Mauro Pezzè, Silvia Abrahão, Birgit Penzenstadler, Denys Poshyvanyk, Abhik Roychoudhury, and Tao Yue.
2025. A 2030 Roadmap for Software Engineering.ACMTrans. Softw. Eng. Methodol. 34, 5, Article 118 (May 2025),
55 pages.
https://doi.org/10.1145/3731559

1 Introduction
The landscape of software engineering has undergone profound changes in recent years. Impressive
advances in generative artificial intelligence are the most recent and dramatic innovations that
redefine the world of software engineering. Generative artificial intelligence disrupts the research
landscape with dramatic effects on software engineering research, education, and practice, as never
before.

This special issue is the result of intensive 2-day discussions at the 2030 Software Engineering
Workshop, co-located with ACM SIGSOFT FSE (Foundations of Software Engineering) held on 15–16
July 2024, in Porto De Galinhas, Brazil. We invited the authors of 58 of the 76 papers submitted to
the workshop to further discuss their ideas and extend their submissions for this special issue. The
liberating structure1 of the workshop fostered in-depth discussions among 62 participants through
a carefully curated series of activities, including impromptu networking, flash keynotes, 1-2-4-All,
shift and share, world café, fishbowl, open space technology, 25/10 crowd sourcing, and conversation
café sessions2 (see Figure 13).

Following the ACM TOSEM peer review process, the authors thoroughly reviewed their papers
based on the new ideas that emerged from the discussions at the workshop and the reviewers’
comments on the workshop submissions. Ultimately, the ACM TOSEM Editorial Board selected 33
papers for this special issue. We completed the special issue with four editors’ papers written by a
subset of ACM TOSEM editors and peer reviewed by the ACM TOSEM editorial board. These papers
address four hot topics: Artificial Intelligence for Software Engineering [33], Software Engineering by
and for Humans [1], Automatic Programming [117], and Software Security Analysis [26].

Overview of the Editorial and the Special Issue
This editorial reflects the key discussions at the workshop that emphasize the disruptive impact of
generative artificial intelligence on software engineering. Seven core open research areas emerged
from the workshop, forming the structure of this special issue: artificial intelligence for software
engineering, software engineering by and for humans, sustainable software engineering, automatic
programming, security and software engineering, verification and validation, and quantum software
engineering.

Artificial Intelligence for Software Engineering. The recent breakthrough in generative artificial
intelligence triggers the deepest change in the skyline of software engineering research and practice
since the Internet revolution in the second half of the last century. The software engineering
community has never seen such a fast and predominant growth of new research threads, such
as the application of artificial intelligence and machine learning in software engineering and

1https://www.liberatingstructures.com/.
2A special thank to Daniel Russo, who designed the program, and to Matteo Ciniselli, Luca Di Grazia, Niccolò Puccinelli, and
Ket artificial intelligence Qiu, who coordinated the program on-site (Niccolò and Ketai) and off-site from Lugano (Luca and
Matteo).
3More pictures at https://www.inf.usi.ch/faculty/pezze/se2030.html.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1145/3731559
https://www.liberatingstructures.com/
https://www.liberatingstructures.com/
https://www.inf.usi.ch/faculty/pezze/se2030.html
https://www.inf.usi.ch/faculty/pezze/se2030.html

A 2030 Roadmap for Software Engineering 118:3

Fig. 1. Participants and discussions at the 2030 Software Engineering Workshop (the upper and lower half of
the picture, respectively).

the challenges of engineering machine learning-driven systems, both of which have become the
dominant themes of the main software engineering conferences and journals.

Section 2 of this editorial presents the main opportunities of generative artificial intelligence in
software engineering and emphasizes the challenges of defining unbiased datasets and benchmarks
shared between industry and academia, engineering reliable and stable prompts, integrating artificial
intelligence tools with classic software engineering techniques, explaining the process and results
of the artificial intelligence tool, and balancing effectiveness, efficiency, and ethics.

The 10 papers that comprise Section Artificial Intelligence for Software Engineering, the largest
section of the special issue, offer a fish-eye view of opportunities and challenges. The editors’ paper
[33] presents a comprehensive overview of opportunities and challenges.

Terragni et al.’s [189], Qiu et al.’s [160], Burgueño et al.’s [25], and Kessel and Atkinson’s [88]
papers discuss the impact of artificial intelligence on the software engineering process. Terragni
et al. [189] address the opportunities and challenges of integrating artificial intelligence into the
software development process, emphasizing the risks of overreliance on artificial intelligence, the
centrality of human judgment, the need to train the next generation of software engineers, and
the importance of multidisciplinary collaborations between communities. Qiu et al. [160] present
the current state and future trends of artificial intelligence-assisted programming, focusing on how
artificial intelligence alters the roles of developers from manual coders to orchestrators of artificial
intelligence-driven development ecosystems. Burgueo et al. [25] discuss the challenges of model-
based software engineering with deep learning and a large language model. Kessel and Atkinson
[88] propose semantic-aware training of generative artificial intelligence to check, synthesize, and
modify software engineering artifacts.

He et al.’s [73], Zhao et al.’s [243], and Chen et al.’s [35] papers deal with the integration of
artificial intelligence within multi-agent systems, large language model app stores, and large
language models for mobile systems, respectively. He et al. [73] highlight the need of integrating
large language models into multi-agent systems to enable autonomous problem-solving, improve

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:4 M. Pezzè et al.

robustness, and provide scalable solutions for managing the complexity of real-world software
projects. Zhao et al. [243] highlight the issues of large language model app stores, focusing on data
mining, security risk identification, development assistance, and market dynamics, and discusses
the relationships between stakeholders and technological advancements, with the focus on ethics
and impacts on human society. Chen et al. [35] present challenges in improving mobile computing
with large language models.

Lin et al.’s [245] and Gao et al.’s [62] papers complete the horizon with access issues and
overall challenges. Lin et al. [245] discuss obstacles, opportunities, and challenges of the open
source artificial intelligence-based software engineering solution to facilitate access to diverse
organizational resources for open source artificial intelligence models, while ensuring privacy. Gao
et al. [62] identify seven aspects of software engineering in the era of large language models and 25
related challenges.

Software Engineering by and for Humans. Machine learning, artificial intelligence, and au-
tonomous systems are shaping a new landscape for software engineering by and for humans
by radically changing even the basic concept of a software artifact. These evolving systems present
new ethical, fairness, and technical challenges for software engineers. Humans are becoming an
integral part of large software ecosystems, and the new role of humans in software systems calls
for a shift in software engineering research from a narrow focus on users of software systems to a
broader vision where humans are an integral part of cyber-physical ecosystems.

Section 3 of this editorial explores the impact of generative artificial intelligence on developers,
software engineering teams, and human–artificial intelligent agent collaboration. The six papers
that comprise the Software Engineering by and for Humans section of this special issue examine
the roles of humans in the new landscape of software engineering in the era of generative artifi-
cial intelligence and highlight the challenges posed by hybrid human–artificial intelligent agent
teams.

The editors’ paper [1] explores various dimensions of human–artificial intelligent agent inter-
actions and discusses the disruptive effects of artificial intelligence on software development,
developer productivity, team dynamics, development tools, and the broader profession and educa-
tion of software engineering. It also outlines the transition fromGraphical User Interfaces (GUIs)
to intelligent Adaptive User Interfaces (AUIs) and from No Operations to artificial intelligence
for IT Operations, while anticipating new challenges in developing reliable, human-centric smart
ecosystems, such as the next generations of smart cities.

Autili et al.’s [9], Mastropaolo et al.’s [123], and Souza et al.’s [51] papers discuss the challenges
of engineering smart systems for humans. Autili et al. [9] address human and societal challenges
in the design of smart digital systems, define proactive, reactive, and passive roles for human
interaction, and explore the duality of trust and trustworthiness. Mastropaolo et al. [123] discuss
the interplay between artificial intelligence-driven automation and human innovation. Souza et al.
[51] introduce the concept and challenges of fairness debt in the development of smart digital
systems, investigate the causes of fairness deficiencies in software development, and highlight their
effects on individuals and communities.

Jackson et al. [79] and Hyrynsalmi et al. [78] focus on the impact of artificial intelligence
on software engineers. While Jackson et al. [79] emphasize the enduring importance of human
creativity in the era of generative artificial intelligence for software engineering, Hyrynsalmi et al.
[78] discuss the risks and impact of generative artificial intelligence on diversity and inclusion in
the field.

In summary, this special issue establishes a foundation for understanding and addressing the
disruptive shift in human-centered software engineering in the coming decade.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:5

Sustainable Software Engineering. The concept of sustainable development [24] extends beyond
classic environmental concerns and spreads over software systems in cyber-physical spaces [148].
Sustainable software operations in cyberphysical spaces require new design, development, de-
ployment, and maintenance approaches that minimize the ecological footprint, improve resource
efficiency, and promote social responsibility [204].

Section 4 of this article presents the challenges and opportunities of sustainably engineering
sustainable software systems for a sustainable world.

The five papers that comprise Section Sustainable Software Engineering of this special issue
highlight the main challenges to sustainable software engineering. König et al.’s [97] and Betz
and Penzenstadler’s [17] papers discuss the challenges of engineering software for sustainability.
König et al. [97] discuss the role of software engineering to address global sustainability and
social inequality by reducing both the increasing consumption of resources and digital inequalities.
Betz and Penzenstadler [17] highlight the great change in the role and responsibility of software
engineers and discusses the social and environmental impacts of technology, with a focus on ethical
and educational issues.

Shi et al.’s [182], Cruz et al.’s [45], and Moreira et al.’s [131] papers consider the environmental
impact of software engineering. Shi et al. [182] highlight the main challenges of reducing the
energy consumption of large language models for software engineering. Cruz et al. [45] discuss
the impact of adopting environmentally friendly practices to create artificial intelligence-enabled
software systems. Moreira et al. [131] focus on new curricula integrating sustainability into software
development.

Automatic Programming. Machine learning, deep neural networks, and large language models
are the largest magnitude factor of human productivity ever seen in software engineering since
the early days. They open new frontiers towards automated programming, disrupt the quality and
security scenario, and raise new societal and legal issues.

Section 5 of this editorial offers a fish-eye view of the impact ofmachine learning on programming,
and highlights the different dimensions of generating, repairing, maintaining, and evolving code.

The four papers that comprise Section Automatic Programming of this special issue highlight
the main challenges of automatic coding with machine learning. The editors’ paper [117] discusses
in detail the main challenges of automatically generating, repairing, maintaining, and evolving
code with large language models, by emphasizing quality and trustworthiness. Robinson et al.
[166] focus on the impact of large language models on both end-user software engineering and
the software development lifecycle. Assunção et al. [8] highlight the transition from maintenance
to modernization and discuss the challenges and opportunities of software modernization as a
reengineering of entire legacy systems. Ran et al. [163] move beyond automatic programming and
call for a strategic response to the anticipated formal method crisis with principled engineering
methodologies.

Security and Software Engineering. The revolution in software production, the many emerging
domains, and the enormous growth of software systems in both size and complexity open new
security issues far beyond classic security engineering. The engineering of secure software systems
is a key element of cybersecurity and opens many new challenges.

Section 6 of this editorial analyzes the core issue of cybersecurity in the era of artificial intelli-
gence. It looks at the new challenges of assessing the security of automatically generated code and
exploiting generative artificial intelligence to improve security.

The four papers that comprise Section Security and Software Engineering discuss the new chal-
lenges of analyzing security in the era of generative artificial intelligence. The editors’ paper [26]
discusses the challenges for assessing and maximizing the security of code co-written by machines,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:6 M. Pezzè et al.

defining approaches that work even if some functions are automatically generated, and tools that
scale to an entire ecosystem. Zhou et al. [246] discuss the main challenges to improve vulnerability
detection and repair using a large language model.

Williams et al.’s [219] and Wang et al.’s [211] papers discuss software supply chain security.
Williams et al. [219] present the challenges of closing software supply chain attack vectors and
supporting the software industry. Wang et al. [211] analyze the layers of the supply chain and
discusses the challenges for robust and secure development with large language models.

Verification and Validation. Generative artificial intelligence offers powerful tools to enhance soft-
ware verification and validation activities and the quality process, and challenges software engineers
with the need to verify artificial intelligence-powered tools as well as artificial intelligence-powered
smart ecosystems.

Section 7 of this editorial overviews the main challenges of verifying artificial intelligence engines
and artificial intelligence-powered software, and of empowering validation and verification with
artificial intelligence and machine learning.

The editors’ paper [1] discusses the impact of generative artificial intelligence on developers and
teams, as well as the new challenges of developing reliable, smart human-centric ecosystems. The
six papers comprising this section deeply discuss the challenges and opportunities of verifying
complex software systems with the aid of generative artificial intelligence.

Wang et al.’s [209], Li et al.’s [106], Molina et al.’s [129], and Cederbladh et al.’s [32] papers analyze
the challenges of using large language models for verifying software systems. Wang et al. [209]
discuss the challenges and opportunities of artificial intelligence-centric testing focusing on the
interrelated dimensions of process, personnel, and technology. Li et al. [106] share the challenges
and opportunities of using a large language model for metamorphic testing. Molina et al. [129]
spotlight the role of large language models in automatically generating test oracles. Cederbladh
et al. [32] discuss the need and challenges of new models for model-based early verification and
identify six main challenges for early verification and validation that concern human factors
(community and organization), automation (tools), and conceptualization (models, scope and
methodology).

Birchler et al.’s [21] and Casadei et al.’s [29] papers discuss the challenges of verifying software-
in-the-large context of cyberphysical systems. Birchler et al. [21] overview the challenges of
simulation testing of cyberphysical systems; Casadei et al. [29] widen the discussion to large-scale
cyberphysical systems.

Quantum Software Engineering. Quantum computing fundamentally reshapes the landscape of
software engineering with new ways of developing and designing software. At the same time,
quantum computing opens enormous opportunities to solve complex problems that currently
challenge classic computing.

Section 8 of this editorial delineates the new landscape that emerges from quantum computing:
Quantum software engineering and summarizes the state of the art, challenges, and future trends
of quantum software engineering from the typical phases of the software development lifecycle,
such as requirements engineering, architecture, modeling, programming, testing, and debugging.

Murillo et al.’s [134] and Ramalho et al.’s [162] papers that comprise Section 8 of this special
issue dive into the key issues and present important challenges of quantum software engineering.
Murillo et al. [134] provide an overview of the new scenarios that quantum computing enables,
and discuss the impact of quantum computing on software engineering, and on verification and
validation. Ramalho et al. [162] discuss the challenges and opportunities of quantum computing
for software testing.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:7

Fig. 2. Overview of McLuhan’s tetrad.

Organization of the Sections
The following seven sections of this editorial (i) overview the state-of-the-art and practice, (ii)
discuss the main Challenges and Trends, and (iii) propose a roadmap for the major research area.
These sections illustrate the disruptive impacts of new technologies on software engineering using
McLuhan’s tetrads [124].4 Figure 2 presents the four diamonds of McLuhan’s tetrad, with an icon
in the center representing the technology, and four diamond that indicate what the technology
enhances, what it makes obsolete, what it retrieves from the past, and what it reverses and flips into
when pushed to the extremes. Section 9 concludes the editorial with a comprehensive roadmap for
software engineering, summarizing the key open research directions for the next decade.

2 Artificial Intelligence for Software Engineering
Modern software engineering evolves rapidly as artificial intelligence reshapes the development
lifecycle. Traditional software engineering relies on structured code and predictable execution,
using techniques such as program analysis, testing, and debugging. In contrast, artificial intel-
ligence brings probabilistic, data-driven, and often opaque behaviors to the workflow [62, 73].
This transformation changes the traditional software development paradigms, not only in tooling
and automation, but also in developer collaboration and decision-making [160, 189]. The shift
to artificial intelligence reshapes the core assumptions of software engineering. Developers no
longer just write and test code; they design prompts, interpret output, validate generated artifacts,
and coordinate with autonomous agents. Qiu et al. [160] highlight how this evolution transforms
developers into orchestrators who manage intelligent systems rather than simply composing in-
structions for machines. In this new context, artificial intelligence serves not just as tool, but as a
collaborator–agent capable of writing, refactoring, and reviewing code.

Integrating artificial intelligence into software engineering improves developer productivity,
enables tools that accelerate prototyping, and introduces artificial intelligence agents that trans-
form the software lifecycle. He et al. [73] illustrate how large language model-based multi-agent
systems enable distributed problem solving, pushing the boundaries of automation and scalability.
4The Canadian philosopher Herbert Marshall McLuhan defined the Tetrad in the mid-70s to illustrate the disruptive effect of
new media and more generally new technologies and innovations in terms of abilities that the new technologies enhance,
obsolesce, retrieve, and reverse, captured with the four diamonds of the tetrad.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:8 M. Pezzè et al.

Fig. 3. The disruptive impact of artificial intelligence on software engineering.

Automation significantly improves software adaptability to complex environments and redefines
the maintenance process.

This transformation obscures practices that depend on manual code inspection, fixed test oracles,
and predictable behavior. Burgueno et al. [25] highlight the growth of artificial intelligence and
encourage a fresh look at both the use of models and the importance of human collaboration, with
trustworthiness being a critical factor. Terrangi et al. [189] warn against blind reliance on artificial
intelligence tools, advocating for human oversight and critical thinking as essential elements to
ensure safety, correctness, and ethical responsibility. Morescient et al. [88] argue that current
large language model-based code models fall short in tasks requiring semantic understanding.
Artificial intelligence reverses the assumption of software engineering on classic non-functional
requirements (for instance, maintainability, performance, and scalability), by emphasizing the role
of new requirements and concerns, such as explainability and fairness [62]. Zhao et al. [243] call for
governance frameworks for emerging large language model app stores and their impact on society.

The McLuhan diagram in Figure 3 visualizes the disruptive impact of artificial intelligence on
software engineering. Artificial intelligence dramatically enhances productivity by automating
many tasks. It enhances documentation by improving and augmenting comments and documents.
It enhances the adaptation and evolution of software systems and personalized solutions, with
flexible solutions. Artificial intelligence retrieves natural language pseudo-coding and end-user
programming. It retrieves self-adaptive and autonomic software systems, dynamic code refactoring,
formal verification, and requirements engineering. Artificial intelligence obsolesces classic software
engineering practice, process, and education, with a dramatic paradigm shift from coding to
“prompting” and “validating.” It obsolesces code review, summarization, and manual documentation
by automating many activities. When pushed to the extremes, artificial intelligence reverses over-
reliance in software systems, lack of control, and explainability, by hiding core computational
aspects. It reverses homogeneous solutions by pushing human creativity out of the loop.

2.1 State of the Art and Trends
In this section, we explore the evolving landscape of artificial intelligence for software engineering
by examining the challenges, tools, and emerging practices that shape the field. We bring together
recent advances in prompt engineering, model evaluation, software lifecycle integration, and

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:9

explainability for software engineering. We present the state of the art and our vision for the
current challenges and future roadmap.

2.1.1 Prompt Engineering. The effectiveness and reliability of large language models for code
greatly depend on the prompts used to query them. The design of prompts to optimize these models
is complex and poses a significant challenge across various application domains. Existing methods
for prompt engineering, such as Chain-of-Thought, ReAct, Tree-of-Thoughts, and more elaborate
approaches like Retrieval-Augmented Generation, provide in-context learning to guide the model
answer. The current methods are primarily tailored for natural language processing tasks, and it
is not yet clear whether these techniques can be effectively applied within the realm of software
engineering, since the source code fundamentally differs from the natural language [30].

Challenges and Trends. Optimizing large language models for code through engineering prompts
poses significant challenges across applications. In-context learning guides models for accurate
answers and reduces the costly pretraining and fine-tuning for specific tasks. The successful use of
zero-shot and one-shot learning to summarize the code [229, 235] and of conversational prompts
for automatic program repair [222–224, 230] leads to new efficient prompting strategies in software
engineering. The main advantage of in-context learning is the reduced cost of model training. It
remains a challenge to confirm both the promising results of early studies on the composition of
effective in-context learning demonstrations [63] and the benefits of design patterns and principles
that minimize the impact of in-context learning on the performance of large languagemodels. Recent
research on prompts has demonstrated the feasibility of evaluating the effect of prompts on the
generated code required [168] to detect meaningful prompts that enable the detection of code smells.
Improving prompt design for code summarization and software engineering tasks requires careful
refinement beyond simple instructions (that is, ask for generating a specific function, complete
the code, and act as a programmer expert). A deeper analysis of different prompt components
could improve their effectiveness, as recent studies have investigated the combination of multiple
prompts to refine code and code translation [235].

2.1.2 Evaluation of Large Language Models. Current studies that explore the use of artificial
intelligence for software engineering research remain in their early stages [226]. Existing metrics
for assessing deep learning models in software engineering mainly focus on code generation, mea-
surement accuracy—comparing model-generated code to manually designed code—and efficiency
[31, 113, 240], measuring the time taken to generate code, often alongside traditional readability
metrics and robustness metrics [210]. Few studies propose new automated testing methods to
address the diverse scenarios of deep learning models in software engineering [70, 195, 225]. Many
organizations either rely on third-party data labeling companies for manual labels [139] or use
large language models as evaluators [244]. Manual dataset labeling can incur considerable costs
and is prone to errors [139]. It is essential to define a standardized data pipeline to evaluate artificial
intelligence models used in code and fairly compare different approaches. Software engineering
requires a cohesive framework that facilitates the smooth integration of new metrics and scenarios
while maintaining a uniform infrastructure. This framework would simplify the process from
concept to hypothesis validation, it will reduce time and effort, and thus enhance the reliability of
evaluations of the performance of deep learning-based approaches. A benchmark should encompass
three key components with their challenges: the dataset, the metric, and the protocol used for the
metric [167].

Challenges and Trends. Datasets are essential for both training and testing. Current datasets for
training deep learning models collect data from open source platforms such as GitHub and Stack
Overflow. These datasets often lack ethical considerations [185], exhibit varied quality, and are not

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:10 M. Pezzè et al.

self-contained [37]. Many code examples rely on external modules and are poorly documented,
making them difficult to understand or learn. Specific datasets are narrow in focus and capture a
small fraction of the diverse scenarios one may face, resulting in biases [77]. We need robust and
unbiased test oracles [11] to guarantee the quality and reliability of deep learning-based systems,
including large language models.

Most currently available datasets focus on source code, input and output examples, repository
metadata, and software programmer interviews [83]. We need specialized datasets, for instance,
explaining and interpreting a model requires designing experiments to answer causal questions
[167]. Most testing datasets also suffer from contamination, where benchmarks may unintentionally
overlap with model training data. The contamination between training and evaluation datasets
compromises the model evaluation. We need unbiased datasets and benchmarks.

Metrics are essential tools for evaluating models, and are either grounded in inherent properties
or defined through comparative analysis of multiple models within empirical studies. Current
metrics are limited in evaluating accuracy, precision, recall, and perplexity [37, 110, 111, 227].
We need new metrics to assess the inherent deep learning properties of software engineering, for
instance, reasoning capacity, causal questioning, trustworthiness) [91].

The inadequate evaluation of deep learning systems can have significant consequences, including
risks to patient well-being [165] and safety [208]. The metric depends on rigorous testing, which is
currently limited by the lack of test oracles [11]. We need protocols that use reliable metrics and
datasets to new automated testing methods evaluate a model and interpret results. The protocols
shall outline the curation of the dataset, the purpose of the metrics, the evaluation properties, and
the interpretation of the results. Correctly interpreting the evaluation of models involves the use of
taxonomies about the presence and type of vulnerabilities and code smells [144].

2.1.3 Integrating Deep Learning with Traditional Software Engineering. Deep learning signifi-
cantly influences every phase of the software engineering lifecycle, from requirements gathering
to code generation, testing, and maintenance.

Software Requirements and Design. A few studies [190] exploit deep learning techniques to support
the software design process, and focus on specific tasks such as design pattern identification [190]
user interface detection [34, 130], requirement classification [92], extraction [105], traceability
[212], validation [220], generation [192], and completeness enhancement [114]. Deep learning has
yet to see widespread adoption in software requirements and design.

Generation of Software Source Code. Deep learning models accelerate and enhance the accuracy of
complex coding tasks [122, 214, 234]. Generation tasks include code representation generation [85],
code generation [39], code completion [41, 104, 217], code summarization [101], code comment
generation [67], and method name generation [138]. Classification tasks involve code localization
[3], which focuses on identifying source code within screencasts, as well as type inference [120],
code search [107], and clone detection [216]. Empirical research suggests that the accuracy of
Copilot-generated code depends on factors such as the programming language and the complexity
of the task [46, 145, 236], and stress the need to evaluate the reliability of artificial intelligence-
generated code, which is crucial in software engineering. Several studies examine the capabilities
and limitations of code intelligence tools [28, 191], and conclude that current code intelligence tools
excel in simple tasks and falter in complex tasks that require deeper semantic understanding [191].

Software Testing. Artificial intelligence is transforming software testing by automating test
generation and improving fault detection. Research in this area has explored the use of large
language models to generate test cases, showing promising results [19, 47, 108, 140, 178, 232].
However, current techniques do not guarantee compilable or executable test cases [238]. To improve

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:11

the reliability, quality, and fault detection effectiveness of generated tests, large language model-
based test generation can be integrated with automated test generation tools such as Randoop
[142], EvoSuite [59], and Pyguin [115], as presented by [102].

One key challenge in using large language models to automate software testing is the generation
of effective test oracles that verify whether software behavior aligns with expected outcomes.
Existing unit test generators primarily produce regression oracles based on implemented behavior
rather than intended behavior, making them unsuitable for exposing faults in artificial intelligence-
generated code [80, 181]. Studies indicate that generated test oracles often capture the actual
behavior of the program instead of the expected behavior, limiting their effectiveness [76, 94].

Chen et al. [38] and Segura et al. [179] propose metamorphic testing as a promising solution to the
oracle problem, by using metamorphic relations to infer expected behavior based on input–output
relationships. Metamorphic testing is useful in this context when conventional test oracles are
unavailable or difficult to specify. Recent research has used large language models to both automate
the discovery of metamorphic relations and improve the effectiveness of metamorphic testing [6,
183, 194]. Despite these advances, the automatic generation of metamorphic relations remains a
significant challenge. Some interesting approaches derive test oracles with neural networks [49, 53].

IT Operations. Artificial intelligence for IT operations involves leveraging artificial intelligence
techniques to enhance IT operations. Research has focused on tasks such as anomaly detection
[90, 237], incident classification [36, 68], and root cause analysis [228, 247]. Despite increasing
attention, a significant gap between research and industry adoption, particularly with regard to
goals, techniques, and practical challenges of log analysis, continues to widen [74].

Program Analysis. Program analysis—the automated evaluation of the features of a program,
including correctness, robustness, and security, plays a critical role at various stages of the software
lifecycle, such as optimization, validation, testing, debugging, comprehension, and maintenance.
The increasing scale, complexity, and diversity of modern software systems pose several significant
challenges to the effectiveness and assessment of artificial intelligence-assistant tools. The variety of
programming languages and runtime environments hinders the advancement of analysis techniques,
and analyzing dynamic programming languages yields incomplete results.

Challenges and Trends. Despite rapid advancements, deep learning in software engineering faces
challenges that hinder its adoption. In software requirements and design, artificial intelligence
struggles with ambiguity, domain-specific understanding, and incompleteness, affecting tasks
such as requirement extraction, classification, and traceability [92, 105, 212]. Researchers have
relied primarily on convolutional neural networks to explore these tasks, as the available data
consist of images. Expanding research to incorporate retrieval-augmented generation techniques,
transformer-based models, and decoder architectures could improve contextual awareness and
artificial intelligence-driven software requirements and design.

The challenges associated with artificial intelligence in code generation encompass limited
generalization across diverse datasets, which significantly impairs their effectiveness within various
real-world contexts. This limitation exacerbates concerns about out-of-distribution instances and
overfitting, as noted in previous studies [52]. In addition, issues related to the copyrightability and
ownership of generated code are also pertinent [184]. The inability of artificial intelligence systems
to synthesize and derive novel code from examples and descriptions restricts potential innovation.
Although artificial intelligence tools well execute straightforward tasks, they exhibit difficulties
when scaling to intricate and semantically nuanced assignments. We still need robust evaluation
approaches to assess the quality, security, and maintainability of generated code.

Artificial intelligence-driven software testing faces key challenges in test case correctness, oracle
reliability, and automation of metamorphic testing. Test cases generated with large language

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:12 M. Pezzè et al.

models often fail to compile or run and need additional validation. The generation of test oracles
remains a challenge, as large language models tend to capture actual rather than intended behavior.
Although metamorphic testing addresses this issue through metamorphic relations, automating
the generation of metamorphic relations remains a complex and open research problem. The most
recent attempts to generate test oracles with deep neural networks indicate a promising research
direction.

Artificial intelligence for IT operations faces efficiency constraints and prompt window limi-
tations. Bug triangle, anomaly detection, and root cause analysis require context from multiple
system components, often exceeding model capacities. Chain-of-thought reasoning improves inter-
pretability, but generates excessive intermediate output, increasing the computational overhead.
Artificial intelligence for IT operations requires both prompt engineering techniques to condense
context with limited input sizes while preserving essential information and efficient models to
process large-scale data.

2.1.4 Explainable Artificial Intelligence for Software Engineering. Interpretability is essential to
ensure reliable artificial intelligence for software engineering, as it allows developers to understand
and verify model decisions [91]. Explainable artificial intelligence [12] offers both knowledge-
driven and data-driven interpretability approaches [96]. Knowledge-driven approaches generate
explanations from domain knowledge and model-specific insights, while data-driven approaches
rely directly on the data. Data-driven approaches include intrinsic and post hoc methods with either
local or global scope.

Intrinsic interpretability approaches define inherently transparent models to directly comprehend
the decision-making processes. Many software engineering tasks, like defect prediction [231]
and effort estimation [71], rely on common intrinsic methods such as linear regression. Post hoc
interpretability approaches such as Local Interpretable Model-agnostic Explanation [164] and
Shapley Additive Explanations [116], widely adopted in defect prediction [81, 82], performance
analysis [173], code analysis [177, 188], and code generation [112], explain the predictions after the
model training and without altering the models.

Local approaches, like just-in-time defect prediction [158], line-level defect prediction to improve
debugging [215], analysis of the quality of code [200], prediction of the retention of syntax knowl-
edge [143, 199], and counterfactual explanations [43, 75] explain individual predictions. Global
approaches, like sequential rationales to explain code completion tasks [196] and software analytics
to support strategic decision-making [48], extend statistical findings from local explanations to
explain the overall behavior of the model.

Post hoc explainability approaches badly handle multicollinearity, a common characteristic of
source code, leading to misleading importance scores with inflated or distorted values for highly
dependent features. Recent studies indicate that causal interpretability [135] can successfully reduce
misleading interpretations by mitigating the influence of confounders.

Mechanistic interpretability dissects the internal mechanisms of complex models to infer the
causal relations of operations. Recent studies indicate that sparse autoencoders can effectively
detect regions in the activation spaces [56, 112], probes can explain how deep models encode
structural information, by mapping hidden representations onto abstract syntax trees [119, 193],
attention distributions can serve as interpretable signals to understand model decisions [128], the
integration of neurosymbolic artificial intelligence can bridge the gaps of traditional explainability
techniques while enhancing model transparency [198].

Challenges and Trends. The main challenges of explainability are multicollinearity among source
code features and the granularity of the explanations. Multicollinearity among source code features,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:13

which are often highly correlated, makes it difficult for interpretability techniques to isolate the
true contribution of individual features.

Local interpretability provides insights specific to individual instances; however, it often lacks
generalizability. Global interpretability captures overarching patterns across the model; however, it
may oversimplify by overlooking important details in individual predictions. Most global approaches
rely on correlational explanations that highlight statistical associations but do not reveal causal
relationships, thus lacking the depth of understanding needed for critical tasks such as debugging
or model refinement. Subjectivity plays an important role in how users perceive and evaluate
explanations, and we need user studies to evaluate interpretability methods from a human-centered
perspective.

2.2 Roadmap
—How to develop domain-specific prompt design patterns that address the syntactic rigor, depen-

dency management, and functional correctness requirements of code? We need dataset snippets,
APIs, and documentation to inform prompt design, as well as syntactic and semantic parsers
to analyze code structures and extract meaningful patterns for prompting.

—What critical components to create standardized and contamination-free benchmarks tailored
to software engineering tasks? We need ethically sourced [185] datasets spanning multiple
languages, domains, and code complexities [40], as well as contamination data detectors [213]
for fairly evaluating model.

—How to reliably integrate deep learning in the software engineering lifecycle? We need ap-
proaches that ensure model transparency, robustness, and alignment with engineering goals
in various phases of the software engineering lifecycle, spanning from requirements design
to code generation, testing, artificial intelligence for IT operations, and program analysis.
We need continuous validation of these approaches through real-world testing to ensure the
truthfulness of deep learning systems throughout the development process.

—What interpretability techniques for plausible and feasible explanations of complex software
engineering tasks? We need methods that account for the multicollinearity inherent in software
engineering artifacts, to generate explanations that align with developer expectations, by
leveraging causal reasoning and hybrid interpretability (local and global).

—What strategies to enhance the generalizability of explainability methods across various software
engineering tasks and models? We need task-agnostic interpretability approaches, supported by
cross-domain benchmarks and user studies, to deliver consistent and trustworthy explanations
in software contexts.

3 Software Engineering by and for Humans
Human–artificial intelligence interactions have a deep impact on software development, software
engineering education, and society at large. While early research on software engineering for
artificial intelligence and artificial intelligence for software engineering primarily focuses on
technical aspects, there is now a broad agreement that humans play a crucial role in shaping the
next generation of development approaches for artificial intelligence-powered systems.

The tetrad in Figure 4 illustrates the disruptive impact of human–artificial intelligence interaction
on both the technical and social dimensions of software engineering. Human–artificial intelligence
interaction enhances the automation of a wide range of software engineering tasks and the developer
productivity by supporting a new generation of hybrid teams composed of humans and artificial
intelligence-powered agents. It enhances creativity by acting as a catalyst for generating new ideas,
expanding problem-solving approaches, and automating tedious tasks to free up mental space for
innovation. It enhances developer experience by automating repetitive tasks, optimizing workflows,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:14 M. Pezzè et al.

Fig. 4. The disruptive impact of human–artificial intelligence interaction in software engineering.

improving the quality of the code, and boosting productivity. It enhances user experience as artificial
intelligence-powered systems have the potential to analyze user behavior, anticipate needs, and
adapt user interfaces to provide seamless experiences.

Human–artificial intelligence interaction retrieves mental models and human-in-the-loop para-
digms, by reinforcing continuous, interactive learning between artificial intelligence, developers,
and users. When humans interact with an artificial intelligence system for a software engineering
task, they build both a shared understanding and a mental model that gets seamlessly updated
through the interaction. Human–artificial intelligence interaction retrieves multimodal interaction
(for instance, speech, text, gestures, eye movement, facial expressions) and uncertainty to create
more natural, reliable, and effective artificial intelligence systems. It is crucial to consider uncertainty
in human–artificial intelligence interaction to ensure trust and safety in artificial intelligence-
assisted decision-making. Humans shall trust artificial intelligence systems in high-risk situations
when the uncertainty is high.

Human–artificial intelligence interaction also retrieves AUIs by reintroducing and significantly
enhancing their core principles. The many human–computer interaction studies of AUIs, which
dynamically adjust based on user behavior, context, and preferences, face important limitations due
to rigid rule-based adaptation. Artificial intelligence can both inject prediction and personalization
and enable real-time learning and continuous optimization.

Human–artificial intelligence interaction obsolesces traditional human–computer interaction
and GUIs. Artificial intelligence-driven interfaces replace both static layouts and manual inter-
actions with adaptive, multimodal, and conversational experiences, and reduce the relevance
of conventional GUI design and evaluation methods. Human–artificial intelligence interaction
introduces highly dynamic, interactive, and real-time adaptation, by reducing the relevance of
the rigid Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) cycle. Artificial intelligence assis-
tants continuously adjust to user behavior without waiting for an explicit “plan-execute” phase.
Artificial intelligence systems learn dynamically from human interactions and allow humans to
directly control adaptation. Human–artificial intelligence collaboration eliminates the need for rigid
execution, that is, human–artificial intelligence systems co-adapt, where the artificial intelligence
adjusts on-the-fly instead of following a rigid execution phase.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:15

Human–artificial intelligence interaction challenges traditional communication theories, which
were primarily designed for human-to-human interactions. Artificial intelligence introduces new
dynamics that require a human-centric rethinking of communication and collaboration models
that address the complexities of human-to-human, human-to-artificial intelligence, and artificial
intelligence-to-artificial intelligence interactions.

When pushed to extremes, human–artificial intelligence interaction reverses hybrid intelli-
gence—the synergy between human cognition and artificial intelligence—by either over-relying on
artificial intelligence (leading to human obsolescence) or limiting artificial intelligence autonomy
(hindering innovation). This dynamic recalls J.C.R. Licklider’s concept of man–computer symbiosis
[109], and advocates for balanced and iterative collaboration, where artificial intelligence agents and
humans continuously learn from each other. Ethical concerns also intensify, pushing beyond classic
human-centric software engineering towards cognitive and emotional fit—artificial intelligence’s
ability to understand user intent and provide empathetic responses. We need to ethically design
computational empathy to avoid manipulation. Software fairness debt [51], that is, accumulated
bias and unfairness in decision-making software systems, can flip in two extremes: artificial intel-
ligence may either overcorrect bias and cause reverse discrimination or amplify existing biases
and reinforce systemic inequalities. It is crucial to both define transparent and adaptive artificial
intelligence systems with human oversight to ensure fairness without distortion and to integrate
fairness management in the lifecycle of the artificial intelligence system.

3.1 State of the Art and Practice
3.1.1 Software Engineering by Humans. Generative artificial intelligence is profoundly trans-

forming software engineering practices. It brings back human-centric computing, where instructions
are given in natural language rather than strict programming syntax. This shift enables developers
to focus on higher-level abstractions and problem-solving rather than low-level code implemen-
tation. Artificial intelligence-powered tools are reshaping software development not only from a
technical standpoint but also in terms of human collaboration, roles, and team dynamics.

Several studies leverage artificial intelligence to automate repetitive tasks such as coding, de-
bugging, and refactoring to improve developer productivity and well-being: Artificial intelligence
can improve efficiency and reduce frustration by fixing errors, recommending best practices, and
generating documentation [214]. Artificial intelligence lets developers focus on creative problem-
solving. Mastropaolo et al.’s paper [123] in this special issue discusses the interaction between
artificial intelligence-driven automation and human innovation, emphasizing the need for seamless
integration of artificial intelligence while preserving human creativity. The article outlines key
elements vital for this integration, aiming to advance software engineering methodologies and
standards in the era of artificial intelligence.

Artificial intelligence shifts traditional roles and responsibilities. Developers are no longer creators,
but also curators; they shift from manually writing code to reviewing, refining, and steering
artificial intelligence-generated outputs. This shift requires strong critical thinking skills. The
rise of artificial intelligence in software development shapes new roles, such as the artificial
intelligence whisperers, developers skilled in prompt engineering, fine-tuning artificial intelligence
suggestions, and understanding artificial intelligence biases to maximize the potential of the
technology. Artificial intelligence-powered tools foster collaborative and inclusive development
teams. Artificial intelligence assists team members with little coding experience and enables domain
experts to contribute more directly to software development. Artificial intelligence tools that
provide natural language explanations enhance cross-functional collaboration by making code and
technical decisions understandable to non-software-engineering-experts.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:16 M. Pezzè et al.

The integration of artificial intelligence in software development creates new team dynamics
and workflows. Teams incorporate artificial intelligence-powered tools early in the development
process to accelerate both early prototyping and iteration cycles. Artificial intelligence increases
the need of code review and ethics. The presence of hidden biases and inefficiencies in artificial
intelligence-generated code highly emphasizes the need of explainability, security audits, and ethical
considerations to ensure high-quality software development. Generative artificial intelligence deeply
impacts on software development practices that focus on humans. Several studies define principles
and strategies to proactively identify and mitigate biases, and ensure fairness, accountability, and
trustworthiness in artificial intelligence-powered systems [51]. Other initiatives focus on promoting
inclusivity and equity within software development processes [78].

3.1.2 Software Engineering for Humans. Autili et al.’s paper [9] in this special issue explores
the societal and human impacts of autonomous software technologies. The authors emphasize
the need to integrate human, societal, and environmental values into digital system engineering.
They identify four key challenges based on human interaction roles: the proactive role (humans
initiate actions, shaping system behavior), the reactive role (humans respond to system-generated
events), the passive role (humans experience system decisions without direct interaction), and the
duality of trust and trustworthiness (balancing human trust in systems with their reliability and
ethical behavior). To address these challenges, the article outlines a research roadmap focusing on
development processes, requirements engineering, software architecture, and verification, ensuring
digital systems align with ethical and societal needs for long-term sustainability and well-being.

The field of human–computer interaction has a long tradition of creating and applying design
principles or heuristics for assessing and improving user experience. Sun et al. [186] present
a general framework for human–artificial intelligence interaction, and focus on the alignment
between artificial intelligence systems, human users, and specific tasks. Sun et al. emphasize two
key aspects: how well artificial intelligence fits human needs and capabilities (human–artificial
intelligence fit) and whether artificial intelligence is suitable for the tasks it performs (Task–AI
fit). Sun et al. also introduce the concept of human–artificial intelligence collaboration continuum,
which accounts for varying degrees of artificial intelligence agency in interactions. This continuum
ranges from scenarios where artificial intelligence serves as a passive tool under human control to
situations where artificial intelligence acts as an autonomous agent making independent decisions.
By integrating these elements, the framework provides a structured approach to analyze and
design Human–artificial intelligence interactions, emphasizing the importance of compatibility
and collaboration dynamics to enhance user experience and system performance.

Some papers propose guidelines for both designing artificial intelligence systems and under-
standing human–artificial intelligence interactions. Amershi et. al. [7] propose 18 guidelines for
human–artificial intelligence interaction grouped into four categories that guide the different
interaction stages: initially (make clear what the artificial intelligence system can do), during the
interaction (make the system processes transparent), when the interaction is wrong (help users
recover), and over time (foster user trust and improve the system). These guidelines emphasize
usability, transparency, error recovery, and adaptability, ensuring that artificial intelligence systems
support and empower users rather than frustrate or confuse them.

3.1.3 Challenges and Trends. As artificial intelligence becomes more integrated into human
workflows, several challenges emerge alongside future trends shaping the next generation of
human-centered approach to human–artificial intelligence interaction in software engineering.

3.1.4 Developer Productivity, Experience, and Creativity. The editors’ paper [1] in this issue
explores future research directions on developer productivity, experience, flow, and creativity,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:17

and discusses the impact of artificial intelligence on software development tools, by highlighting
opportunities and challenges across different tool categories throughout the software development
lifecycle. Jackson et al.’s paper [79] in this special issue presents a research agenda that addresses the
impact of generative artificial intelligence on creativity in software development, and propose six
interconnected themes: individual capabilities, team capabilities, product, social impact, and human
aspects. Jackson et al. emphasize that human creativity will play a crucial role in maintaining a
competitive advantage in software development, as generative artificial intelligence integrates into
the developer toolchain and practice.

3.1.5 Developer Diversity and Inclusion. Hyrynsalmi et al.’s paper [78] in this special issue
explores the key challenges and the research opportunities for advancing software developer
diversity and inclusion. Hyrynsalmi et al. propose a research roadmap that guides both researchers
and practitioners in creating more inclusive software development environments, with a focus on
maximizing benefits while minimizing harm, particularly for vulnerable groups. Hyrynsalmi et
al. examine the relationship between artificial intelligence and software developers’ diversity and
inclusion, and highlight how artificial intelligence can both support and hinder diversity in software
development teams. Although artificial intelligence-driven tools can enhance productivity, they
may also reinforce existing biases if not carefully managed. Hyrynsalmi et al. stress the importance
of implementing proactive measures to ensure that artificial intelligence technologies contribute to
greater inclusivity and equity in software engineering.

3.1.6 Collaboration Practices and Hybrid Human–Artificial iIntelligence Teams. The editors’ paper
[1] in this issue discusses a number of challenges that arise from evolving collaboration practices
in software development in the artificial intelligence era. Teams are becoming increasingly hybrid
in terms of both distribution and integration of artificial intelligence-powered development agents
alongside human developers. The article examines the impact of artificial intelligence-powered
development tools and agents on team dynamics and developer-stakeholder interactions, and
observes the importance of an active role of artificial assistants for truly effective hybrid human–-
artificial intelligence teams. The key success factor of hybrid human–artificial intelligence teams
lies in both balancing automation with human oversight and ensuring that artificial intelligence
increases productivity without compromising creativity, security, or ethical considerations:

—Artificial Intelligence as a Code Collaborator : artificial intelligence-powered co-programmers
analyze tradeoffs, refactor autonomously, and propose architectural improvements beyond
simply suggesting code as done by current artificial collaborators, for instance, GitHub Copilot,
Code Llama.

—Artificial Intelligence in Pair Programming: artificial collaborators as partners in pair-
programming teams, learning and adapting to developers’ coding style and project-specific
patterns.

—Artificial Intelligence in Code Reviews and Quality Assurance: artificial collaborators provide
rationale, learn from human feedback, and continuously improve the quality of the review
process, beyond simply flagging syntax errors.

—Artificial Intelligence as an Agile Team Member: artificial collaborators as active members of
agile teams, tracking project progress, predicting sprint outcomes, and identifying potential
bottlenecks.

3.1.7 Human-Centered Approaches to Generative Artificial Intelligence in Software Engineering.
Russo et al.’s Copenhagen Manifesto [170] advocates for a human-centered approach to integrate
generative artificial intelligence in software engineering. The Copenhagen Manifesto empha-
sizes ethical responsibility, transparency, fairness, and social well-being, and urges that artificial

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:18 M. Pezzè et al.

intelligence-driven software engineering enhances rather than diminishes human capabilities. The
implementation of the Copenhagen Manifesto faces several challenges:

—Ethical and Regulatory Uncertainty: Defining universal ethical standards is difficult due to
regional and cultural differences. Artificial intelligence regulations are constantly evolving,
making it difficult for software developers to ensure artificial intelligence-powered systems
align with ethical guidelines and legal requirements. We advocate for a global artificial intelli-
gence ethics framework and foster collaboration with policymakers to establish clear guidelines.

—Balancing Human-Centered Design with Artificial Intelligence Efficiency: Prioritizing human
oversight and values can slow down artificial intelligence-driven automation and reduce
efficiency. Ensuring fairness and inclusivity in artificial intelligence models requires significant
computational resources and data curation, thus increasing costs. We advocate for hybrid
artificial intelligence–human workflows, where artificial intelligence automates routine tasks
but keeps humans in control of critical decisions.

—Artificial Intelligence Bias and Fairness: Artificial intelligence bias remains a major issue, as
artificial intelligence models may still reflect human prejudices embedded in training data.
Ensuring fairness and transparency in artificial intelligence decisions requires continuous
monitoring and auditing, which can be resource-intensive. Souza et al.’s paper [51] in this
special issue identifies some key causes of fairness deficiencies in software development and
examines their negative impact on individuals and communities, including discrimination and
the perpetuation of inequalities. Souza et al. propose a socio-technical roadmap with six key
goals to build equitable and socially responsible artificial intelligence-driven software systems:
bridging the gap between research and real-world applications, developing a framework for
fairness debt, equipping practitioners with tools and knowledge, improving bias mitigation,
integrating fairness tools into industry practice, and enhancing explainability and transparency
in artificial intelligence systems.

—Measuring Human-Centered Artificial Intelligence Success: Defining clear metrics for fairness,
explainability, and user well-being remains an open challenge. The impact of human-centered
artificial intelligence approaches is difficult to quantify. We need standardized assessment
frameworks that track fairness, usability, and trust in artificial intelligence-driven systems.

Although the Copenhagen Manifesto [170] sets a vision for ethical artificial intelligence in
software engineering, its success depends on clear regulations, technical advances, cultural shifts,
and practical measurement strategies. Overcoming these challenges requires collaboration between
artificial intelligence and software engineering researchers, software engineers, and policymakers.

3.1.8 Personalization and Context Awareness. Personalization and context awareness will trans-
form software engineering by making artificial intelligence-centered systems intelligent, proactive,
and user-centric. Artificial intelligence-centered systems will adapt in real time based on user
preferences, past behavior, and emotional state. Personalization and adaptability require artificial
intelligence to access sensitive user data (for instance, behavioral patterns, coding habits, and
work preferences), raising significant privacy concerns. Privacy-preserving artificial intelligence
techniques, such as federated learning, will play a crucial role in ensuring privacy while maintaining
personalization.

3.1.9 Emotional Intelligence and Computational Empathy. Computational empathy refers to the
ability of artificial intelligence systems to recognize, interpret, and respond to human emotions in
a way that mimics empathetic behavior. Pataranutaporn et al. [146] highlight both the importance
of initial user perceptions in shaping human–artificial intelligence interactions and the importance
of emotion-aware artificial intelligence systems to improve both user experience and developer

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:19

well-being. Artificial intelligence systems still struggle with emotional understanding, often leading
to unnatural or inappropriate responses, as evident in current artificial intelligence-driven customer
support systems, mental health chatbots, and virtual assistants. Artificial intelligence systems
shall enhance emotional recognition and contextual awareness to ensure natural and empathetic
interactions.

3.1.10 Evolving Software Engineering Approaches to Support Human–Artificial Intelligence Inter-
action. The adaptive behavior of software systems has largely increased and has become extremely
critical. The traditional MAPE-K cycle that is widely used in self-adaptive systems [87] does not
adequately cope with the dynamic, interactive, and real-time adaptivity of human-centric artifi-
cial intelligence systems. Software engineering can cope with the new adaptive behavior with a
paradigm shift from the fixed MAPE-K adaptation cycle to real-time and continuous learning that
seamlessly adjusts based on user behavior, and from a system-driven approach to a human-in-the-
loop model, where users actively guide learning and decision-making. The new paradigm shall
leverage deep learning and reinforcement learning to support end-to-end, self-improving processes.

The shift of artificial intelligence systems from rigid to human–artificial intelligence-co-guided
adaptation, from reactive monitoring to proactive, anticipatory adaptation, and from rule-based
and reactive responses to flexible probabilistic artificial intelligence models that continuously refine
outputs requires rethinking software engineering approaches to accommodate the dynamic nature
of human–artificial intelligence interactions, and ensure adaptive, transparent, and user-centric
artificial intelligence systems.

Cleland-Huang et al.’s MAPE-K-HMT framework [44] moves towards co-guided adaptation with
a structured method for designing systems for effective human-autonomous-systems collaboration
that enhances hybrid human–machine teamwork. Several recent artificial intelligence-driven self-
adaptive models, like Digital Twin-Driven Adaptation [233], Federated Learning for Decentralized
Adaptation [161], and Explainable artificial intelligence-Driven Self-Adaptation [175], enhance
real-time, decentralized, and intelligent adaptation. However, all the models proposed so far are
tailored to specific domains, such as artificial intelligence-powered code assistants, autonomous
cloud resource management, artificial intelligence-driven cyber-physical systems, and adaptive
security systems, and suffer from severe limitations that include high computational costs, model
accuracy constraints, data privacy risks, and challenges in handling heterogeneous data. The next
generation artificial intelligence-driven self-adaptive systems shall integrate hybrid intelligence
[2] that combines symbolic artificial intelligence, neural networks, and human feedback, to create
transparent, reliable and ethically aligned adaptation models.

3.1.11 Effectively Supporting Human–Artificial Intelligence Interaction. Amershi et al.’s guidelines
[7] lay the foundation for designing artificial intelligence systems that effectively support humans,
and open several software engineering challenges:

—Complexity in Implementing Guidelines: Many of the guidelines, such as making artificial
intelligence processes transparent and enabling user feedback, require sophisticated artificial
intelligencemodels that can explain their decisions.This is particularly difficult for deep learning
systems, which often function as black boxes. Designing adaptive artificial intelligence behavior
that learns from user interactions without introducing biases or errors is highly complex.

—Tradeoffs between Transparency and Usability: On one side excessive system transparency (for
instance, exposing detailed decision-making processes) can overwhelm users with unnecessary
information, leading to cognitive overload, on the other side simplified and opaque artificial
intelligence systems limit trust and lead to miscommunications about the system capabilities.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:20 M. Pezzè et al.

—Error Recovery and User Control: On one side, it is crucial to allow humans to correct artificial
intelligence errors, on the other side it is difficult to design effective error recovery mecha-
nisms without disrupting the human experience. In some high-stakes domains (for instance,
healthcare, finance), humans may lack the expertise to identify or correct artificial intelligence
errors.

—Balance Artificial Intelligence Assistance and Over-Reliance: Excessive automation and guidance
can lead to overreliance and can reduce human oversight and critical thinking. An excessive
dependence on artificial intelligence recommendations may lead humans to trust incorrect
outputs without verification.

—Diverse Human Needs: Humans use artificial intelligence systems with varying levels of
technical expertise, making it difficult to design universal artificial intelligence interaction
models that cater to novices and experts.

—Continuous Artificial Intelligence Evolution and Maintenance: Artificial intelligence models and
humans evolve over time, and artificial intelligence systems shall be continuously updated.
Implementing human feedback loops can be resource-intensive and may require ongoing
human oversight to ensure artificial intelligence systems to remain effective and ethical.

Mitigating the challenges of effectively supporting human–artificial intelligence interactions
requires to suitably combine technical solutions, best practices of design, and ethical considerations.
Many strategies address specific challenges in human–artificial intelligence interaction. Barredo
Arrieta et al. [12] propose both explainable artificial intelligence that mitigates the complexity of
implementing the guidelines with insights into how artificial intelligence systems make decisions,
and a modular approach for designing transparency, adaptability, and error recovery as independent
components of artificial intelligence systems. Selective transparency is an interesting tradeoff
between transparency and usability, for instance, layered explanations enable human to access high-
level summaries by default and detailed technical explanations on demand, and to adjust the level of
artificial intelligence transparency based on human expertise and needs. Personalization and AUIs
[176] adjust to different expertise and needs, by offering simplified artificial intelligence interactions
to new users and detailed control and transparency to experts, and by provide customization
settings to fine-tune the behavior of the artificial intelligence system. While there are several
strategies to address specific challenges in human–artificial intelligence interaction, the integration
of the different strategies into artificial intelligence systems that fully align with human-centered
principles and guidelines is still an open challenge.

3.2 Roadmap
—How to design effective collaboration practices for hybrid human–artificial intelligence teams?
We need new frameworks that seamlessly integrate human and artificial intelligence teams,
by defining clear roles, responsibilities, and decision-making boundaries, and ensuring mutual
trust and explainability with adaptive interfaces that facilitate intuitive interactions. We need
metrics to assess team efficiency, artificial intelligence reliability, and user satisfaction in
hybrid collaboration settings.

—How to develop equitable and socially responsible artificial intelligence-powered software sys-
tems? We need to integrate heterogeneous datasets, bias detection tools, and explainable
artificial intelligence approaches into a development process of artificial intelligence systems
to proactively identify and mitigate biases.

—How to balance transparency, user control, privacy, and adaptability, to ensure that artificial
intelligence systems enhance human capabilities rather than hinder them? We need approaches

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:21

that balance transparent decision-making, human control mechanisms, robust privacy protec-
tions, and adaptive capabilities that align with human needs, to design artificial intelligence
systems to empower users while maintaining ethical safeguards.

—How to design artificial intelligence systems that incorporate computational empathy? We
need models that recognize, interpret, and respond to human emotions to create artificial
intelligence systems that interact naturally and effectively with humans. We need advances
in affective computing, sentiment analysis, user-centered design, and software engineering to
design artificial intelligence systems that ethically adapt to emotional and contextual cues.

—How to ensure artificial intelligence systems meet evolving human needs? We need models of hu-
man–artificial intelligence interaction to effectively capture the dynamics of human–artificial
intelligence evolution. We need to borrow and integrate communication theories from diverse
disciplines to develop new abstractions. We need clear metrics to assess the effectiveness
of human–artificial intelligence interactions. We need software engineering methodolo-
gies that accommodate the dynamic and interactive nature of human–artificial intelligence
collaboration.

4 Sustainable Software Engineering
We have been well aware of the limits of a planet with finite resources in juxtaposition with
the promise of infinite economic growth since the early 1970s [125]. The limitations of the finite
resources of the planet are well discussed in the 1972 Brundtland5 report of the UN World Com-
mission on Environment and Development [24]. The report proposes the most commonly referred
to definition of sustainable development as development that meets the needs of the present without
compromising the ability of future generations to meet their own needs. However, despite great
policy efforts (for example, the Millennium Development Goals and the Sustainable Development
Goals [171] signed by many nations) and our considerable progress [172], we still struggle to
change that paradigm and effectively change our relationship with the planet [127]. Halkos and
Gkampoura’s sustainable development paper [72] claims that we are close to meet economy-related
targets, such as the targets included indecent work and economic growth (Sustainable Development
Goal 8), industry, innovation and infrastructure (Sustainable Development Goal 9), and responsible
consumption and production (Sustainable Development Goal 12), while we need to accelerate to
meet the targets and goals that concern education (Sustainable Development Goal 4), cities and
communities’ sustainability (Sustainable Development Goal 11), and climate change (Sustainable
Development Goal 13).

Sustainable software engineering is a key research area in software engineering that encompasses
(i) a reflection on principles of software design for a positive impact in the world, (ii) implemented
in systems that can be maintained over an extended period of time, and (iii) with methods and
practices that favor the inclusion of systems thinking to identify potential second and third order
impacts.

This research area has become crucial for society over the last ten plus years for a number
of reasons: (i) the footprint of IT systems, especially including second- and third-order effects,
is ever increasing despite a large body of work on energy efficiency, (ii) unpredictable natural
disasters have become more frequent and larger in scale and impact, and (iii) the recent rapid
development of artificial intelligence makes balancing interventions and approaches that question
techno-solutionism ever more important.

Sustainable software engineering includes sustainability in software engineering, that is, making
software engineering itself a sustainable practice with sustainable systems, often with an emphasis

5Norwegian minister Gro Harlem Brundtland who chaired the commission.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:22 M. Pezzè et al.

Fig. 5. The disruptive impact of sustainability on software engineering.

on technical sustainability and energy efficiency, and software sustainability engineering [148], that
is, approaches to engineering software systems that create a positive environmental impact, for
example, nature restoration or carbon capture. Sustainability in software engineering and engineer
for sustainability refer to slightly different concepts of sustainability, which depend on the context
and scope from which sustainability is considered. The anthropologist and systems thinker Joseph
Tainter explains this need of scope [187], and clearly discusses that we must ask (i) which system
to sustain, for(ii) whom, (iii) over which time frame, and (iv) at what cost, to properly address some
sustainability concerns. The Oxford English Dictionary defines sustainability as “the capacity to
endure.” The Brundtland Commission defined sustainable development as “meeting the needs of the
present without compromising the ability of future generations to meet their needs,” which is the basis
for the 2030 Sustainable Development Goals that many governments use as target references when
implementing sustainability measures.

The McLuhan tetrad in Figure 5 illustrates the disruptive impact of sustainability on software
engineering. Sustainable software engineering enhances multidisciplinary approaches by requiring
integration of disciplines for the sake of social contribution, education on responsibility, and
assessment of the impact of software systems on sustainability. Sustainable software engineering
retrieves system thinking, environmental side effects, integrated domain knowledge, and impacts
on individual well-being and society. Sustainable software engineering has the potential to reverse
the refusal of software engineering responsibility for the impacts of software systems, sustainability
debt, and a lack of sufficient reflected large-scale artificial intelligence development. Sustainable
software engineering obsolesces pure computational thinking, silo mentalities, techniques and
approaches that ignore environmental and social impact.

4.1 State of the Art and Trends
We discuss both sustainability in software engineering and software engineering for sustainability.
König et al. [97] further differentiate and discuss the sustainability lifecycle assessment [157] in
their paper in this special issue. Venter et al.’s definition of software sustainability as a “composite,
first-class, nonfunctional requirement, that is, a measure of a range of core software quality attributes,
which includes at a minimum maintainability, extensibility, and usability” [206], offers a purely

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:23

technical perspective that does not take into account the important dimensions of sustainability
that Becker et al. discuss in their IEEE software paper [14]:

—Environmental Dimension: The use and stewardship of natural resources, ranging from im-
mediate waste production and energy consumption to the balance of local ecosystems and
concerns about climate change.

— Individual Dimension: The freedom of individuals and agencies, human dignity and fulfillment,
the ability of individuals to thrive, exercise their rights, and develop freely.

—Social dimension: The relationships between individuals and groups, the structures of mutual
trust and communication in a social system, and the balance between conflicting interests.

—Economic Dimension: The financial aspects and business value, capital growth and liquidity,
investment questions, and financial operations.

—Technical Dimension: The ability to maintain and evolve artificial systems (such as software)
over time.

4.1.1 Sustainability in Software Engineering. Sustainability in software engineering focuses on
energy-efficient coding, energy-efficient algorithms, lean development environments, and what is
often called green software engineering. Sustainability in software engineering aims to minimize
both the environmental footprint of development and the subsequent energy consumption of
software in production, independently of the purpose of the software itself. Sustainable approaches
in software engineering focus on the different phases of development, ignoring the usage and
impacts of the software produced.

There has been a significant amount of work in the area of requirements engineering on this topic.
Venters et al. [201] define sustainability requirements as a composite non-functional requirement,
and call for both a definition that is tailored to quantitative sustainability objectives that encompasses
its complexity and multidimensional nature [205] and a consolidation throughout the community
[202] based on the Karlskrona manifesto [15]. Penzenstadler [149] integrates sustainability within
an artifact-based requirements engineering method, and Duboc et al. [54] integrate an analytic
perspective on sustainability within requirements engineering.

Research in the area of architecture and design frames sustainability as preserving the function
of a system over an extended period of time [99], based on an etymological understanding of the
word applied to any system, regardless of the presence of software components, by merging the
individual dimension into the social dimension. Venters et al. [203] emphasize the need to capture
the rationale of significant sustainable design decisions to define sustainable architectures. Oyedeji
et al. [141] contribute a software sustainability design catalog based on an implementation of the
principles put forth in the Karlskrona Manifesto [15]. Naumann et al.’s GREENSOFT framework
[136] and Calero and Piattini’s Green in Software Engineering book [27] further elaborate on a
sustainable architectural design.

4.1.2 Software Engineering for Sustainability. Software engineering for sustainability focuses
on the purpose of the software system or service and emphasizes the responsibility of software
engineers about the impact of software systems, as they all operate in the world [14]. Seyff et al.
[180] and Penzenstadler et al. [153] propose five main sustainability dimensions for requirements
engineering to reflect on the sustainability of the system, among the many approaches presented
in Section 4.1. Seyff et al. [180] propose a model to negotiate stakeholder demands to achieve a
positive impact on sustainability, and Penzenstadler et al. [153] define four approaches to identify
stakeholders relevant to sustainability.

The relevant frameworks for including sustainability in the design of software systems are
(i) the sustainability awareness framework [18], mostly applied in requirements engineering, in

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:24 M. Pezzè et al.

initial development [150], in different iterations [151], and in reviews [159], (ii) the sustainability
assessment framework [98], which offers a set of tools to support software architects and design
decision makers in modeling sustainability as a software quality property, and (iii) ENSURE [174]
for eliciting and decomposing sustainability requirements. Kienzle et al. [93] contribute a vision of
a model-based framework that enables a broader engagement with and informed decision-making
about sustainability issues, and identify core emerging challenges that include dealing with open-
world contributions, uncertainty, and conflicting worldviews, and that still hold 5 years after their
publication.

4.1.3 Challenges and Trends. The main open challenges of sustainable software engineering and
software engineering for sustainability concern multidisciplinary approaches, assessment, education,
and large language models.

4.1.4 Multidisciplinary Approach. The pervasiveness of software-intensive systems in all areas
of our daily life leaves large shares of the population behind, and increases the digital divide [13].
Inclusive design methods can bridge some of the gaps between developers and stakeholders, still
limited to developers and potential users. Multidisciplinary research combines the knowledge
and ideas of experts and non-academic key stakeholders to address socially relevant problems,
by both fostering cooperation and collaboration among scientific disciplines and non-academic
stakeholders, and creating solution-oriented knowledge well suited for both scientific and societal
practices [103]. Multidisciplinary research for sustainability comes with a set of challenges and
requirements to establish mutual learning among researchers in different disciplines [100].

Multidisciplinary approaches are essential to tackle sustainability challenges that are inherently
socially relevant. We need new methods that integrate knowledge from environmental science, eco-
nomics, social sciences, and domain-specific areas with software engineering to develop sustainable
software systems. We need new collaborative frameworks to facilitate cross-disciplinary innova-
tion while ensuring effective knowledge transfer to software engineering practices. We need to
understand how to embed sustainability-focused insights into software design and decision-making
to build software systems that not only minimize environmental impact but also promote social
responsibility and economic viability. König et al. [97] identify opportunities to address global
sustainability challenges, such as climate change and social inequality, by enabling energy savings
and social innovations. Currently, software systems threaten to exacerbate these crises, as evident
in the increasing consumption of resources and widening digital inequalities. Software engineering
plays a key role in tackling the problems and exploring the potential of software technology for
sustainability. König et al.’s research vision of sustainability-driven software engineering and mul-
tidisciplinary research formats revisit the understanding of sustainability in software engineering,
and then differentiate into the challenges of (i) sustainability lifecycle assessments, (ii) sustainability
criteria with multi-criteria decision analysis for tradeoff decisions, (iii) sustainability assessment
approach and implementation, and (iv) multidisciplinary research and real-world laboratories.

4.1.5 Assessment. Assessment plays a key role in measuring sustainability beyond just energy
consumption. We need meaningful Key Performance Indicators (KPIs) that reflect a wide
spectrum of sustainability, including carbon footprint, resource usage, social impact, and long-term
viability [203]. Venters et al.’s [204] review of 234 studies offers a foundation and a road map of
emerging research themes in the area of sustainable software engineering, with an emphasis on the
assessment and identification of suitable KPIs. Guldner et al. [69] offer a reference measurement
model that focuses on the energy and resource efficiency of software systems. Bets et al.’s [18],
Lagos et al.’s [98], and Naumann et al.’s [136] studies identify several potential indicators that
need a large-scale benchmark evaluation and the integration within the ISO standards, like the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:25

environmental ISO 14,000 series and the social responsibility ISO 26000. Both Forrester’s [58] and
Penzenstadler et al.’s [152] papers stress the importance of systems thinking as a methodological
approach for comprehensively assessing software systems, given their complex interplay with the
world. We need standardized sustainability dashboards that integrate a set of suitable KPIs in an
accessible and actionable manner, to enable organizations to effectively and comparatively assess
the sustainability performance of the software systems and adapt to evolving environmental and
ethical standards.

4.1.6 Education. Education is a foundational element in preparing future software engineers
to address sustainability challenges. Called for already by Penzenstadler and Fleischmann in 2011
[154], teaching sustainability in software engineering remains a challenge. Universities are barely
starting to integrate sustainability into their educational programs [155]. We needs to define (i)
the new role of software engineers in a world increasingly shaped by environmental constraints
and ethical considerations [17], (ii) educational curricula that embed sustainability principles
into software engineering programs, to make students understand the environmental and social
impact of their work [131], and (iii) new pedagogical approaches—such as experiential learning,
interdisciplinary courses, and industry collaboration [155]—to help future engineers develop the
skills and mindset needed to drive sustainable innovation.

Moreira et al. [131] highlight the two antithetical roles of software engineering in sustainability.
On one side, software systems contribute to environmental issues through high energy consumption.
On the other side, software systems hold the potential for solutions that improve efficient and
equitable resource management. We need to (i) move beyond traditional curriculum models and
fully integrate sustainability into every aspect of software development, (ii) embed sustainability as
a core competency, and (iii) trigger a major shift in software engineering education. We shall start by
raising awareness and establishing harmonized and clear sustainability concepts, integrate ethical
thinking, and create a holistic view. On that foundation, we can establish sustainability metrics
and indicators, integrate software engineering competencies for sustainable software, integrate
skills for inter- and intra-personal teamwork, and build the business case for sustainability. We
shall adopt evolving legal requirements and standards, change cultures through advocacy and
lobbying, reorient artificial intelligence to drive sustainability, activate academic organizations,
facilitate industrial adoption, and identify greenwashing. Betz and Penzenstadler’s [17] describe
the shifts in the role and responsibilities of software engineers, advocate for large language model-
based approaches for coding, and highlight the deep shifts driven by the profound societal and
environmental impacts of technology.

4.1.7 Artificial Intelligence and Rapid Global Digitization. Artificial intelligence systems carry
both risks and opportunities for environmental sustainability [89]. We shall focus on both assessing
artificial intelligence business cases through the lens of ethics and sustainability, and ensuring that
artificial intelligence solutions contribute positively to environmental and social goals, rather than
exacerbating issues such as resource consumption and bias [197]. Integrating artificial intelligence
sustainably into software engineering requires investigating energy-efficient artificial intelligence
models, responsible data usage, and scalable best practices that align with long-term sustainability
objectives. By addressing these concerns, we can ensure that artificial intelligence serves as an
enabler of sustainability rather than a source of additional challenges.

Kunkel et al. [95] contribute a scoping review of six software and artificial intelligence sustain-
ability frameworks with respect to their recognition of environmental sustainability and the role of
stakeholders, and provide recommendations for future research on how stakeholder involvement
can help firms and institutions design and use more sustainable artificial intelligence systems. Shi

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:26 M. Pezzè et al.

et al. [182] focus on reducing energy consumption of large language models for software engi-
neering, and call for comprehensive benchmarks, efficient training methods, effective compression
techniques, improved inference acceleration, and program optimization. Cruz et al. [45] focus on
the impact of adopting environmentally friendly practices to create artificial intelligence-enabled
software systems and discuss the environmental impact of using foundation models for software
development, and claim the need to consider the business case, consolidate fundamental concepts,
monitor sustainability, clarify roles’ involvement, and change the machine learning lifecycle.

4.2 Roadmap
Sustainable software engineering requires a research approach that integrates diverse disciplines,
establishes meaningful assessment metrics, enhances education, and ensures responsible adoption
of artificial intelligence. This roadmap outlines key research areas: the role of interdisciplinary
in fostering collaboration, and the need of assessment methodologies, education strategies, and
ethical and sustainable integration of artificial intelligence.

—How to integrate disciplines to work effectively together for sustainability? We need interdisci-
plinary approaches that merge the knowledge of many disciplines, including environmental
science, economics, social sciences, and domain-specific areas, into software engineering.
We need collaborative frameworks to foster cross-disciplinary innovation and knowledge
transfer.

—What KPIs for sustainability beyond energy consumption? We need to define KPIs that capture
themany facets of sustainability.We need standardized sustainability dashboards that integrate
a set of suitable KPIs.

—How to educate future software engineers? We need to define the role of software engineering
for sustainability and educate software engineers on sustainability. We need curricula that fully
integrate sustainability into every aspect of software development and embed sustainability
as a core competency. We need new pedagogical approaches to help future engineers develop
the skills and mindset needed to drive sustainable innovation.

—How to assess the ethical and sustainable dimensions of artificial intelligence systems? We need
to sustainably integrate artificial intelligence into software engineering.

5 Automatic Programming
Automatic programming has gained prominence due to the capability of artificial intelligence-
based coding assistants such as GitHub Copilot. The adoption of automatically generated code
crucially depends on both the quality of the generated code and the trust that can be engendered for
automatically generated code. The shipping of automatically generated code as part of commercial
software products leaves important legal issues to be addressed.

It is fair to say that for the last 50 years, since the first “hello world” program of Brian Kerninghan
in 1972, in the B programming language, a precursor to C, the focus of programming has been on
programming in the large. With automatic programming, the integration of automatically generated
software components becomes critical, and the attention turns to programming with trust [169].
With human programmers involved, there is an implicit expectation of passing the blame if the
event of an error is found in the software. With automatically generated code, the core issue is trust,
and the automatically generated code needs to carry with it a high degree of trust. In the last half
century, the relevant work on software validation has focused on how to program larger and larger
code bases. With code being automatically generated from natural language specifications, the focus
shifts from programming at scale to the trustworthy integration of automatically generated code.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:27

Fig. 6. The disruptive impact of automatic programming on software engineering.

What measures of trust future programmers will be comfortable is a core research question
that remains to be explored. Due to the prevalence of agentic artificial intelligence approaches,
automatic programming is practiced primarily via large language model agents for coding. Thus,
trust issues will play an important role in the design of large language model agents for coding. In
particular, when large language model agents generate code-related artifacts, they need to carry
with them evidence of correctness, which can engender trust in the generated artifact.

The McLuhan tetrad in Figure 6 illustrates the disruptive impact of automatic programming on
software engineering. Automatic programming enhances rapid prototyping and program repair,
by largely reducing time and effort. It enhances productivity, documentation, and personalized
solutions by substituting humans in many effort and time-demanding activities. Automatic pro-
gramming retrieves program analysis, formal specifications, and formal proof of properties to check
for the validity of automatically generated code. Automatic programming obsolesces classic program
synthesis, debugging, and bug tracking. When pushed to the extremes, automatic programming
reverses the emphasis of programming large code bases at scale, instead turning the attention to
programming with trust. It reverses over-reliance on code, loss of control and trust, and reduces
the understanding of code.

5.1 State of the Art and Trends
From a historical perspective, automatic programming traces back to Manna and Waldinger’s
seminal work on program synthesis [121] in the early seventies of the last century, and flourished in
the following decades. The main approaches for synthesizing programs transform certain semantic
and syntactic specifications into either expressions or program snippets that meet the semantic
and syntactic specifications. Semantic specifications can sometimes be very intuitive, such as
input–output examples and semi-formal specifications, while syntactic specifications are typically
restrictions on the syntax of the program to be generated. The early work on automatic code
generation from UML state diagrams still required a significant human effort for modeling.

Large language models raise significant attention towards using natural language prompts
to generate code. Recently, the focus has shifted towards a more agentic artificial intelligence
approach, where large language models can invoke tools, including program analysis tools, to
autonomously complete programming tasks [242].Themain difference between prompts and agents

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:28 M. Pezzè et al.

is the autonomy of agents. Agents can autonomously employ program analysis and file navigation
tools to generate code, test cases, and patches. The autonomy of large language model frees the
agent to plan and execute several steps to accomplish a programming-related task.

Many of the agentic artificial intelligence approaches for automatic programming available
today are suitable for solving “software issues.” An “issue” is a natural language report given as
a unit of work to a software engineer. It could be a task such as a bug fix or a feature addition.
The current state of the art in automatic programming aims to resolve such issues automatically
and autonomously. A key issue for driving innovation in autonomous software engineering is the
availability of challenging problems or data sets. The program repair community had previously
proposed the Manybugs and IntroClass benchmarks for repairing C programs [64], while a large
number of research publications have looked at the Defects4J benchmark [84] for repairing Java
programs. These benchmarks, though influential, are hard to visualize as challenge datasets to spur
interest in automatic programming. Usually, program repair benchmarks document the desired
behavior via test cases, and a suitable test suite may not be available in all software projects. The
natural language processing research community has recently proposed the SWE-bench dataset [],
a set of GitHub Python software projects that challenge autonomous software engineering with
GitHub issues, such as fixing bugs and adding features. There is still the opportunity to extend the
SWE-bench beyond fixing natural language issues. In general, we need datasets that cover a wide
variety of software engineering tasks.

Some very recent technological disruptions in the hardware space, such as the float of NVIDIA
Inference Microservices as a scalable mechanism to harness generative artificial intelligence capa-
bilities via applications, can dramatically impact future software engineering in the presence of
generative artificial intelligence. Such technology trends can dramatically lower the entry barrier
to using generative artificial intelligence in producing commercial software.

The frontier of large language models for automatic programming is a largely open research
question. A software professional today does not only perform individual tasks, such as testing,
coding, and patching. An expert software engineer handles many complex scenarios (by borrowing
a term form the software industry), such as (i) adding a feature and then taking care of any bugs
it can introduce in a codebase, (ii) adding a fix according to an issue, and if the fix is incomplete,
completing it, and (iii) taking over the code of a developer who has left the organization, running
test suites to understand the code, and adding more test cases to improve the understanding. Overall,
scenarios are chains of primitive tasks. Whether large language model agents can generalize to
complex scenarios is still an open research question.

The papers in this special issue highlight three interdependent research directions in automatic
programming: (i) how to autonomously improve code automatically generated from artificial
intelligent coding assistants, (ii) what techniques to safely and securely integrate automatically
generated code into software projects, and (iii) what future programming workflows and the role
of software developers and engineers in the future workflows. The papers take a forward-looking
outlook by envisioning future-day software projects as combinations of manually written code,
automatically generated code, and natural language prompts, which represent the specifications of
code snippets.

The editors’ paper [117] provides an overview of automatic programming and discusses the
future research directions for the software engineering community. The paper stresses the role of
large language model-based agents in achieving autonomous software engineering, for possibly
autonomously improving automatically generated code. A space for innovation in automatic
programming is the design of different large language model agents that can automate different
software engineering tasks and can be combined with automatic programming. A case in point for
work in the software engineering community along these lines is AutoCodeRover [242], which

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:29

gleans the programmer’s intent from the structure of the buggy program through a layered code
search. He et al.’s paper [73] in this special issue outlines the importance of large-language model
agents in a general sense. Lyu et al.’s paper [117] in this special issue underlines the role of
large language model agents for autonomous software engineering, specifically in improving
automatically generated code: Large language model agents can serve to achieve the repair of
automatically generated code. Chen et al.’s paper [35] in this special issue discusses large language
models for developing and maintaining code for mobile apps.

5.2 Roadmap
—How to automatically generated complex scenarios? Where do we go from the current burst
of interest in large language model agents? Will it persist or will it morph in some ways
to define the software engineering of the future in a consolidated fashion? Is this as far as
we can progress the capabilities of an artificial intelligence software engineer? We need
transparent approaches to trustfully generate complete scenarios that software engineering
can understand and review.

—What automatic programming for generating useful and trustworthy software systems? How
to autonomously improve code automatically generated from artificial intelligent coding
assistants? What techniques to safely and securely integrate automatically generated code
into software projects? What measures of trust for automatically generated code? Automatic
programming shifts focus from programming at scale to programming with trust. Artificial
intelligence-powered systems will generate large-scale programs from artifacts in natural
language as well as other human accessible means that describe humans’ needs. We need
generative agents that encompass evidence of correctness, which can engender trust in the
generated artifact.

—What hybrid human–artificial intelligence agent teams? What future programming workflows,
and what will be the role of human programmers in future workflows? The integration
of artificial intelligence into software teams raises questions about team dynamics. How
will software engineers interact with artificial intelligence agents? How should artificial
intelligence agents mutually collaborate? Traditional cognitive theories of cooperative work,
which focus on human goal influence, may not fully encapsulate the nuances of software-
engineering collaboration [10]. We need new processes that address the dynamics of hybrid
teams.

—What role of software engineers in the era of automatic programming? The role of software
engineers and developers shifts from designing and programming code to controlling the
front-end artificial intelligence-powered programmer, and certifying the back-end final auto-
matically generated programs. The attention turns to programming with trust [169]. We need
to refine the individual competencies of software engineers.

—What iterative improvement and architectural vision? Unlike environments where game-
theoretic incentives induce behavior, software development is driven by long-term design
considerations, iterative improvements, and architectural vision [169]. We need to shape a
new horizon to incentivize software development.

6 Security and Software Engineering
As software engineering practice becomes more automated and autonomous, we need to cope with
new types of software vulnerabilities, such as prompt injection attacks, with a relevant impact on
software security. At the same time, artificial intelligence offers new opportunities to detect and
remove vulnerabilities.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:30 M. Pezzè et al.

Fig. 7. The disruptive impact of artificial intelligence on software security.

The McLuhan tetrad of Figure 7 illustrates the disruptive impact of artificial intelligence on
cybersecurity. Artificial intelligence in software security enhances software security testing, vulner-
ability detection, and patching. Artificial intelligence in software security retrieves documentation,
protocol Request for Comments, and software security analysis. Artificial intelligence in software
security obsolesces manual attack vector construction, security alerts, and security upgrades. When
pushed to the extreme, artificial intelligence in software security reverses manual approaches for
dependency management, lack of control and trust, and over-reliance on software security.

6.1 State of the Art and Trends
Artificial intelligence in software engineering raises complementary issues and opportunities. On
one side, new types of errors and vulnerabilities arise from code generated with artificial intelligent
agents [57, 221]. On the other side, artificial intelligence offers new ways to timely detect and repair
vulnerabilities [57, 147].

Artificial intelligence impacts every phase of the critical digital infrastructure, including static
code analysis, vulnerability detection, fault localization, fault patching, and patch ranking. Static
code analysis commonly relies on either pattern-based approaches or flow analysis. Large language
models can largely improve static code analysis; however, large language models are primarily based
on natural language processing, and code cannot be simply treated as text. Fuzzing and symbolic
execution approaches, such as white-box fuzzing, are often used for detecting vulnerabilities on
a day-by-day basis. Large language models can deeply improve fuzzing, with their capability to
ingest and learn system documentation and protocol specifications that can guide fuzzing [126].
Fix localization and patching approaches combine metaheuristic search and (symbolic) analysis, to
capture the intent of the developers and guide vulnerability patching [65]. Large language model
agents for program repair will use (symbolic) analysis tools in the back-end as part of agentic
artificial intelligence approaches. Currently, patch ranking relies on simple metrics, like code edit
distance. Suitably tuned large language models will soon substitute simple metrics for ranking
patches. Table 1 summarizes the deep changes that we foresee in the different phases of the pipeline.

Artificial intelligence will impact on all the steps of the software security technology pipeline.The
evolution of the 2016 DARPA Cyber Challenge (CGC), mainly focused on vulnerability detection,
into the 2023-2025 DARPA artificial intelligence Cyber Challenge that widens the focus on both

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:31

Table 1. The Evolution of the Software Security Technology Pipeline to Protect Critical Digital
Infrastructures

Phase Current Future
Static Code Analysis Pattern-based, flow analysis Large language model guided text-based analysis
Vulnerability Detection (Testing) Fuzzing Large language model guided random and fuzzing search
Fix Localization, Patching Search and analysis Large language model agent with analysis support
Patch Ranking Edit distance or other metrics Fine-tuned large language models

vulnerability detection and fixing, witnesses the interest in holistic approaches for detecting and
fixing security issues. We envision a growing interest in zero-day patching, where detections
will pair vulnerabilities with patch suggestions. We also envision an increasing development of
approaches that combine vulnerability detection with agentic artificial intelligence approaches
to produce production-grade tooling for end-to-end vulnerability detection and remediation. The
research in security engineering will be closely related to industry innovation and trends, with
approaches that deal with software systems in multiple programming languages, thanks to the
involvement of large language models that do not suffer from the limitations of conventional
program analysis tools, which typically focus on a single programming language.

The papers in the special issue clearly analyze both aspects. The editors’ paper [117] in this special
issue provides a comprehensive review of the literature on the use of large language models for
detecting and preparing vulnerabilities. The paper discusses in detail static application security
testing, a core technology for software security analysis, which performswhite-box analysis through
source code scanning, and detects vulnerabilities much more efficiently than manual review of
source code. The paper summarizes the capabilities and discusses the open research directions of
static application security testing.

Any outlook on software security is informed by the attack vectors faced by software systems.
A class of attacks that has recently gained prominence is the supply chain attacks, such as those
exposed by the Solarwinds attack. Software systems are vulnerable to supply chain attacks, since
critical software systems may rely on other open source software, which can be exploited to launch
attacks or exfiltrate critical data. Williams et al.’s paper [219] in this special issue articulates the
issues of supply chain security and provides perspectives and knowledge obtained from intentional
outreach with practitioners to understand the practical challenges and the extensive research
efforts. The article provides an overview of current research efforts to secure the software supply
chain and proposes a future research agenda to close software supply chain attack vectors and
support the software industry. Wang et al.’s paper [211] in this special issue studies the supply
chain of large language models through the dual lenses of software engineering and security and
privacy, and analyzes each layer of the supply chain, presenting a vision for robust and secure large
language model development. Zhou et al.’s paper [246] in this special provides a literature review
of approaches to improve vulnerability detection and repair through large language models.

6.2 Roadmap
—What artificial intelligence-powered approaches to protect critical digital infrastructures? Large
language models pave the way towards multi-language approaches for detecting and fixing
vulnerability faults We envision artificial intelligence-powered tools to protect software
ecosystems in production under human control.
How to prevent security breaches in automatically generated code? Automatic programming
opens new frontiers for security engineering. We can prevent security issues in the generated
code by suitably combining large language models and neural networks with classic vulnerability

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:32 M. Pezzè et al.

Fig. 8. The disruptive impact of artificial intelligence on software verification and validation.

analysis, to trustworthy detect and fix bugs automatically, and analyze and prevent vulnerability
issues in automatically generated code.

7 Verification and Validation
Software verification and validation is well-supported by mature approaches that both sample
(test) and fold (analyze) the source code and execution space of target software modules to detect
failures and locate bugs [156]. Software engineers rely on mature and well-integrated tools within
integrated development environments to automate many repetitive and tedious activities [55, 218].
Software testing approaches and tools execute the target software on a testbed and assume that
software executions are repeatable. Program analysis approaches and tools are based on structured
models of the source code. All verification and validation approaches assume that humans interact
with software systems as external users, that is, humans use the software system through the
provided interfaces, which drive test and analysis.

The emergence of generative artificial intelligence disrupts the overall verification and validation
paradigm. It significantly enhances automation in verification and validation activities while
redefining the roles of software engineers. The last generation of software engineers evaluates
intelligent human-centric ecosystems built with artificial intelligence-powered tools, where humans
are embedded within the systems themselves, rather than serving only as end users.

The McLuhan’s tetrad in Figure 8 illustrates the disruptive impact of artificial intelligence on soft-
ware verification and validation. Artificial intelligence enhances test automation by strengthening
the many activities that are already well-supported by existing tools. It amplifies field testing, which
is extremely useful to timely verify the evolving and emerging behavior of artificial intelligence-
powered applications, enabling autonomic testing that ultimately flattens the border between
testing and production. It radically changes code inspection, review, and pair programming, with
humans controlling and cooperating with virtual inspectors and artificial intelligence-powered
reviewers. It opens new frontiers to metamorphic testing, maintenance, and evolution of test
suites. It enhances program analysis to verify both traditional and emerging properties of artificial
intelligence-powered tools and artificial intelligence-generated software.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:33

Artificial intelligence retrieves analysis in the many different forms, formal models, dynamic
analysis, formal verification, and incremental analysis, to handle a new class of failures and bugs as-
sociated with the new characteristics of artificial intelligence-generated code. Artificial intelligence
obsolesces classic approaches that rely heavily on predefined code structures and artifacts, such as
structural testing, regression testing, and GUI testing, which become increasingly inadequate in
artificial intelligence-based software environments. Artificial intelligence reverses trust and non-
functional properties. It pushes to the limits the lack of trust, trustworthiness, and understanding of
both artificial intelligence-driven activities and artificial intelligence-generated solutions. It pushes
non-functional properties such as fairness, transparency, and trustworthiness to the extreme.

7.1 State of the Art
Recent progress in natural language, voice, image, and video processing, generative artificial
intelligence, extended reality, and quantum computing has dramatically changed the landscape
of software verification and validation. Natural language, voice, image, and video processing,
and artificial intelligence, open new opportunities to enhance classic approaches and tools to
automate all aspects of program verification, towards a completely automated process. Both artificial
intelligence and quantum programs branch off from the core assumptions of classic verification
and validation approaches, namely, repeatable executions and transparent models of the code.
Artificial intelligence supports the fully automatic production of code, with types of failures and
bugs that depend on limitations and hurdles of automatically generating code, rather than human
factors. Artificial intelligence and extended reality pave the road to a new generation of artificial
intelligence-powered human-centric ecosystems with both self-adaptive and evolving behavior,
and with humans in and not just users of the system. Software engineers no longer only test
software systems within agile teams. They test self-adaptive human-centric ecosystems with artificial
intelligence-enabled approaches and tools within hybrid human-virtual teams.

We discuss the impact of new technologies, and in particular generative artificial intelligence,
on software engineering teams and processes in Section 3 of this editorial, and review the impact
of quantum computing on software engineering, and discuss the challenges of testing quantum
software systems in Section 8 of this editorial. In this section, we summarize the state of the art and
spotlight the current trends about the impact of new technologies, and in particular deep learning
and generative artificial intelligence, on automatically generating test cases, the issues of verifying
and validating artificial intelligence-generated code, testing artificial intelligence-powered systems,
and verifying smart human-centric ecosystems.

7.1.1 Automatically Generating Test Cases.

State of the Art and Trends. Although most software testing activities can rely on mature tools, the
generation of test cases does not go much beyond the automatic refinement of initial test suites,
such as capture-and-replay and regression testing. The research results of the first two decades
of the century on automatically generating unit test cases, such as Evosuite [60] and the recent
studies of generating test cases and oracles with natural language processing, like CaMeMa [22],
did not break through industrial practice, yet.

Challenges and Trends. The attempts of the last years to automatically generate test cases and
oracles with large language models [207] indicate a clear trend toward the use of large language
models and deep neural networks to generate test cases. We envision largely automated verifica-
tion and validation environments where testers govern artificial intelligence-powered tools that
automatically verify the software systems, with humans as a fraction of the largely virtualized
population that validates the seamlessly evolving systems in production. The automatic generation

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:34 M. Pezzè et al.

of test cases and oracles with large language models will massively substitute human-intensive
activities, as soon as researchers address the many still open challenges about the datasets for
training the models, the fine-tuning of the general models, the scalability to large systems, and the
completeness of the generated suites.

The automatic generation of tests and oracles greatly reduces human effort, with huge impacts on
maintenance and evolution of test suites that seamlessly adapt and evolve to verify the emerging and
evolving behavior of artificial intelligence-powered software systems, and it will ultimately replace
current test regression and maintenance activities. Generative artificial intelligence enhances
validation activities by multiplying the effort-intensive contribution of humans with avatars and
bots to exhaustively validate the behavior of software systems with a limited human effort.

Li et al.’s paper [106] in this special issue discusses the suitability of large language models to
automatically generate metamorphic tests. Molina et al.’s paper [129] focuses on the challenges
and opportunities of automatically generating test oracles. Cederbladh et al.’s paper [32] advocates
the need of new models to cope with both organizational and behavioral complexity to early verify
and validate software systems. Abrahão et al.’s paper [1] discusses the challenges and the impact of
hybrid human–virtual teams on trust, communication, and inter-personal relationships.

7.1.2 Verifying and Validating Artificial Intelligence-Generated Code.

State of the Art and Trends. The current approaches to software testing aim to reveal failures
and bugs that are due to human errors. Human errors are barely shared with artificial intelli-
gence engines. Developers fail due to human factors, like misunderstandings, distractions, lack of
familiarity with languages, tools, and environments, while artificial intelligence engines are trained
with all required languages, tools, and environments, never distract, and do not suffer from typical
human misunderstandings. Artificial intelligence-generated code suffers from new types of errors
that are largely different from human errors, like hallucinations, misleading choices, and ad hoc
solutions, and that escape most classic testing and analysis approaches.

Challenges and Trends. We argue that both static and dynamic program analysis techniques that
abstract the details of the single executions by folding the infinite execution space into finite
partitions [156] can reveal the new types of faults in artificial intelligence-generated code much
better than common testing approaches, if properly blended with testing, by generalizing the results
of executing finite test suites that sample the infinitely large execution space. Both the training
dataset and the prompts can largely bias the process and consequently the generated code. We need
new approaches to verify the new properties of both the generation process and the generated code.
We need approaches to verify both the stability and reliability of the dataset that we use to train
the artificial intelligence engines and the stability and trustworthiness of the results that we obtain
by prompting the artificial intelligence engines. Verification of domain-conformance and biases of
the training datasets is still a big open challenge. The validation of transparency, explainability,
and the absence of both biases and ethical issues is an open issue. Ahmed et al.’s paper [33] in
this special issue identifies the many challenges of generative artificial intelligence and machine
learning for software engineering, and discusses the challenges of both creating suitable data for
training, prompting, and validating artificial intelligence engines, and the role of explainability of
the results.

7.1.3 Testing Artificial Intelligence Powered Systems.

State of the Art and Trends. The current approaches to test and analyze software systems assume
the repeatability of the behavior. Developers and testers test software systems on testbeds, by
assuming the same behavior of the system in production. Regression testing executes the test suites

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:35

on new versions of the application to check for the conformance of the behavior with respect to
the former versions. The maintenance of software systems aims to both enrich the functionality of
the application and remove the faults that show up only in production. The approaches to field
testing monitor the applications in production to enrich the test suites with new test cases [16].

Challenges and Trends. Artificial intelligence-powered systems evolve over time and adapt to
conditions that emerge only in production, by taking advantage of data from production to train
the model, with behaviors that cannot be fully predicted in advance and replicated on testbeds
before production. The studies of self-adaptive systems highlight the challenges of dealing with
adaptive behaviors within control loops [50].

Verification and validation of the behavior of artificial intelligence-powered systems is still an
open issue, despite the many recent results [241]. The adaptive and non-deterministic behavior of
artificial intelligence-powered systems adds a new combinatorial dimension that exacerbates the
already huge issue of the combinatorial explosion of test suites and opens unexplored challenges
to the already hard oracle problem. Cederbladh et al.’s paper [32] in this issue emphasizes the
importance of early validation and discusses the impact of generative artificial intelligence on
model-based early verification and validation.

7.1.4 Verifying Smart Human-Centric Ecosystems.

State of the Art and Trends. The common approaches to software testing and program analysis
focus on the Software Under Test, and the many recent approaches to testing autonomous systems,
notably autonomous cars, are not an exception. They focus on the ego vehicle in the context of
Non-playable Characters, that is, the behavior of an autonomous vehicle (the ego vehicle) that moves
in the context of dynamic obstacles (NPCs) that behave independently from the behavior of the
ego vehicle [87, 118]. The testing of ego vehicles can assess the quality of single vehicles; however,
it can miss accidents due to unexpected interactions of multiple autonomous vehicles [61].

Challenges and Trends. Artificial intelligence-powered systems and, more generally, software
systems commonly operate in open (cyber-physical) environments and interact with both the
environment and humans. Smart human-centric ecosystems, such as smart cities, smart buildings,
smart grids, healthcare systems, e-markets, emerge as communities of independently owned and
operated (cyber-physical) systems with smart functionalities, each with its own requirements. Smart
human-centric ecosystems adapt and evolve over time while systems enter and exit the ecosystem,
with humans as primary actors within the ecosystem and not just users of the systems [42]. Smart
human-centric ecosystems can fail due to implicit conditions and interactions that emerge only in
production, even when all systems in the ecosystem behave correctly as specified [132].

The characteristics of smart human-centric ecosystems challenge verification and validation
activities. The absence of complete and stable specifications of the ecosystems challenges the classic
definition of correctness as conformance with some specifications. The test cases of smart human-
centric ecosystems shall take into account the adaptive and evolving behavior of the ecosystem and
shall encompass scenarios and requirements from production. The citizens and visitors seamlessly
interact within the smart city beyond and without the boundaries of GUIs and interfaces. The
testing and analysis activities shall take into account the new role of humans as primary actors in
the ecosystems. Large ecosystems like smart cities cannot be fully tested in testbeds or production.
Testbeds cannot reproduce all scenarios that emerge only in production, while Tests that involve
people cannot be executed in production. We envision an evolution of lightweight digital siblings
[66] that encompass models of humans and human groups and that mirror the smart human-centric
ecosystem to fully test the ecosystem.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:36 M. Pezzè et al.

Casadei et al.’s paper [29] analyzes the challenges of engineering collective cyber-physical systems
composed of uniform, collaborative, and self-organizing groups of entities. Birchler et al.’s paper
[21] discusses the challenges of simulation-based testing of autonomous cyber-physical systems.

7.2 Roadmap
—How to tune generative artificial intelligence to generate valid test suites? We need to tune
generative artificial intelligence to take into account the aspects of code, to avoid too many
false positives and negatives that pollute test suites.

—How to assess artificial intelligence-generated code? We need metrics that address the new
challenges of artificial intelligence (like data leakage, dataset bias, and reproducibility) to assess
both the artificial intelligence-generation process and the artificial intelligence-generated
code.

—How to blend software testing and program analysis to verify functional and non-functional
properties of artificial intelligence-generated code? We need to blend testing and analysis to
cope with classic as well as emerging properties of artificial intelligence-generated code.

—How to define the quality of cyber-physical ecosystems? We need to define the properties of
intelligent human-centric ecosystems that capture the quality of ecosystems without complete
and stable specifications.

—How to generate test cases to test evolving systems? We need new approaches both to identify
scenarios that emerge only in production and that have not yet been tested, and to generate
test cases for such emerging scenarios.

—How to generate test oracles for evolving ecosystems? We need test oracles that capture the
desired behavior of systems and ecosystems that adapt and evolve over time.

—How to model humans and human groups for testing smart cyber-physical systems? We need
accurate models of humans and human groups to thoroughly test smart cyber-physical systems
without interfering with the ecosystem in production.

—What digital twins to thoroughly test smart cyber-physical systems? We need digital twins that
capture all and only the aspects that are relevant for testing smart cyber-physical systems, to
guarantee through testing without the costs of heavyweight twins.

8 Quantum Software Engineering
Quantum computing and quantum software engineering have stepped strongly into the science
and research spotlight in the last decades, with the potential to dramatically impact many relevant
sectors such as artificial intelligence, drug engineering, and climate modeling. Today’s quantum
computers are mainly specialized and Noisy Intermediate-ScaleQuantum Devices (NISQ).6
However, quantum computers are rapidly evolving and improving. As Brook observes in his
spotlight paper [23], quantum computing will largely substitute rather than simply complement
classic computing, as soon as general, reliable, and fully scalable quantum computers become
available.

Quantum software engineering is an interdisciplinary field that focuses on the principles, method-
ologies, standards, and tools for designing, developing, testing, maintaining, and managing quantum
software systems, including hybrid quantum-classic systems that run on quantum computers or
quantum simulators. Quantum software engineering involves the application of quantum-based
techniques, including quantum algorithms such as quantum annealing, to solve complex problems
in both classic and quantum software engineering. Quantum software engineering challenges

6NISQ devices have a small number of qubits and are subject to significant levels of noise and errors due to environmental
interference and hardware imperfections.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:37

Fig. 9. The disruptive impact of quantum software engineering.

researchers and practitioners with a unique set of unexplored issues, capabilities, and opportunities
that are driven by the principles of quantum mechanics, such as entanglement and superposition.
Quantum computing dramatically reshapes the software engineering skyline: It requires new ap-
proaches to address the unique challenges of quantum software and leverage the specific strengths
of classic software engineering solutions [5].

The tetrad in Figure 9 visualizes the disruptive impact of quantum software engineering. Quan-
tum software engineering enhances problem solving, algorithmic solutions, artificial intelligence,
verification and validation, with its potential to demolish the NP barrier, and pave the way to
radically new algorithms and solutions. It enhances software security with the new frontiers of
quantum cryptography.

Quantum software engineering retrieves system thinking and mathematical rigor in software
engineering to handle the complexity that quantum software inherits from the principles of quantum
mechanics. It retrieves both low-level programming at the quantum gate level, and the need to
consider hardware constraints and limitations due to the number of qubits, the gate fidelity, the
error rates, and the accessibility of qubits.

Quantum software engineering obsolesces the classic common practice of software engineer-
ing that relies on assumptions about the deterministic behavior of Turing machines and cannot
handle quantum-specific features such as superposition and entanglement. For instance, classic
software engineering manages concurrency and parallelism via threads, processes, and distributed
computing, while quantum computing realizes parallelism by leveraging quantum entanglement
and superposition. Similarly, the probabilistic nature of quantum computing drives out of practice
classic debugging and testing techniques. It obsolesces new verification and validation approaches
for artificial intelligence systems and artificial intelligence-based applications, by pushing the limits
of complexity.

When pushed to the extreme, quantum software engineering reverses software security by
invalidating the core assumptions of many current encryption algorithms. It also reverses energy
efficiency with the huge energy demand of quantum computers. It pushes ethical concerns and
technical wisdom to the limit by moving beyond classic computability borders. Overall, the inherent
complexity of quantum computing and hence quantum software engineering pushes innovations
to the limit, and the limited access of the quantum software engineering community to quantum
hardware may limit the innovations of quantum software engineering.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:38 M. Pezzè et al.

8.1 State of the Art and Trends
Over the past years, the quantum software engineering community has introduced many method-
ologies and tools to address specific challenges in the engineering of quantum algorithms and
applications. Although the research community has explored different phases similar to clas-
sic software development, from requirements engineering to architecture and design, modeling,
programming, testing, and debugging, there is no well-defined and widely recognized quantum
software development lifecycle or practice yet. In this section, we discuss the state-of-the-art and
current trends in the different phases of the software lifecycle, and we discuss the main trends
of quantum software engineering for artificial intelligence and artificial intelligence for quantum
software engineering.

8.1.1 Requirements Engineering.

State of the Art. Requirements engineering is critical for quantum software engineering, and the
limited attention to quantum requirements engineering compared to the work on quantum testing,
debugging, and architecture is mainly due to the lack of commercially relevant applications. The
current studies on quantum requirements engineering highlight the importance of considering
hardware-related constraints such as the number of available qubits, the depth of quantum circuits,
and the amount of noise in NISQ, with some preliminary studies on applying classic requirements
engineering practices such as use cases and goal modeling for quantum.

Challenges and Trends. Quantum requirements engineering faces unique challenges, such as dis-
tinguishing and separating requirements to be handled with classic computing from those to be
addressed with quantum computing, and systematically analyzing constraints related to quan-
tum hardware. Murillo et al.’s paper [133] in this special issue briefly mentions that quantum
requirements engineering will inevitably deviate from classic requirement engineering approaches.

In summary, the quantum community calls for quantum requirements engineering solutions that
(i) deal with all the different requirements engineering aspects including requirements elicitation,
requirements specification and modeling, requirements analysis, (ii) explicitly address the inevitable
evolution of quantum hardware in requirements, and (iii) enable complex requirements analysis
about the optimal allocation of classic and quantum computing resources to address different
requirements.

8.1.2 Architecture.

State of the Art. Quantum software architecture aims to design quantum software systems that
efficiently execute quantum algorithms, manage quantum computing resources, and integrate
with classic software systems. The current studies on quantum software architecture focus on
quantum service-oriented computing, which adapts service-oriented computing principles of classic
computing to quantum software architecture, to design hybrid quantum applications, and benefits
from well-studied techniques such as DevOps to facilitate the continuous deployment of quantum
software.

Challenges and Trends. Murillo et al.’s paper [133] in this special issue highlights important re-
search directions in quantum software architectures, such as identifying all factors that influence
architectural decision-making and designing design patterns to facilitate the development of hybrid
quantum software systems. Murillo et al discuss the main challenges to the research community for
exploiting the full potential of quantum service-oriented computing: standardized and platform-
independent APIs to interact with quantum computers, demand and capacity management, and
workforce training. Yue et al.’s paper [239] in this special issue discusses the need for a taxonomy

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:39

of constraints specific to quantum software architectural designs, a taxonomy of functional and
extra-functional quality attributes, the integration of quantum software components into existing
architectures, and the consideration of quantum hardware-specific properties in architectural
designs.

We need taxonomies, design patterns, architectural design methodologies, and tools that extend
and revisit classic software engineering architecture description languages to address the new
characteristics of (hybrid) quantum applications.

8.1.3 Modeling.

State of the Art. The quantum software engineering community defined several models for quantum
programs, with quantum circuit diagrams being the most popular one. Quantum circuit diagrams
model the sequence of logical quantum gates applied to qubits, and abstract from both the mathe-
matical representation and the implementation details of the gates. There are several approaches to
analyze and optimize quantum circuits: optimize the depth of gates, reduce the number of gates,
and minimize errors and noise by selectively using certain types of quantum gates, given that
the specific quantum hardware is known during the design phase. Several studies suggest model-
driven engineering as a viable solution to raise the level of abstraction, reduce the complexity,
and enable automation. Researchers proposed high-level modeling notations based on Unified
Modeling Language, Business Process Model and Notation, quantum flow charts, and quantum
decision diagrams.

Challenges and Trends. We need to raise the abstraction level of models, which is currently very low.
Murillo et al.’s paper [133] in this special issue discusses the challenges of model-driven engineering
for quantum computing about modeling quantum-specific constructs at a high level, and enabling
intelligent code generation.

We need abstract models to (i) deal with the design and development of complex quantum
software systems, (ii) enable standard communications and integration across classic and quantum
computing paradigms, to facilitate the design and development of hybrid software systems, and
(iii) facilitate automatic transformations to downstream artifacts such as quantum circuits, code,
and tests.

8.1.4 Programming.

State of the Art. Current quantum programming languages (such as QSAM, Qiskit, Q#) require
understanding quantum-specific concepts, such as superposition and entanglement, hardware
limitations such as noise and the number of available qubits. We need quantum programming
languages that abstract from quantum-specific concepts to reduce the complexity of programming
and scale to large programs, and mature tools and libraries that go beyond the simple libraries
currently available for quantum programming. So far, the main effort toward abstract programming
concepts has focused on treating quantum registers as data-type encoding, defining new types to
encapsulate qubit states and operations, and abstracting quantum states and operations.

Challenges and Trends. Murillo et al.’s paper [133] in this special issue discusses the challenges of
defining quantum programming languages that effectively support the complexity of quantum
circuits, enable circuit reuse and optimization, and raise the abstraction level to ease the cognitive
load of quantum programmers. We need effective and mature approaches for optimizing quantum
circuits, ensuring reusability, and facilitating integration with classic software systems. We need
comprehensive quantum software libraries and frameworks to enable cross-platform development,
determine the suitable level of abstraction, and efficiently scale to large quantum programs.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:40 M. Pezzè et al.

8.1.5 Testing and Debugging.

State of the Art. Classic testing strategies, such as assertions, bug patterns, and debugging tech-
niques, barely adapt to the characteristics of quantum programming. Recent studies investigate how
to adapt classic testing strategies, including coverage criteria, partition testing, combinatorial test-
ing, search-based testing, fuzz testing, property-based testing, mutation testing, and metamorphic
testing to quantum program testing, with encouraging but still preliminary results.

Challenges and Trends. The studies of approaches that extend classic testing and debugging to
quantum programs only scratch the surface of a largely open area with many new challenges.
Ramalho et al.’s [137] and Murillo et al.’s [133] papers in this special issue present the main
challenges of testing quantum software systems. Ramalho et at. [137] discuss the challenges of
adapting classic testing strategies, partition testing, structural testing, combinatorial testing, search-
based testing, fuzz testing, property-based testing, mutation testing and metamorphic testing to
quantum program testing, and present a conceptual model that summarizes the key concepts and
challenges of quantum software testing and debugging. Murillo et al. [133] overview the challenges
of test oracles, test scalability, test optimization, and transitioning from simulators to quantum
computers, considering the noise of current quantum computers.

We need quantum-specific testing strategies that effectively (i) deal with the test oracle problem
exacerbated by the no-cloning theorem in quantum computing, (ii) handle noise when executing
test cases on quantum computers that are inherently noise and error prone, (iii) generate test cases
from high levels abstraction, beyond quantum circuits, (iv) test hybrid quantum applications, (v)
consider practical constraints such as limited quantum computing resources, (vi) produce scalable
test cases, (vii) generate mutants that correspond to real bugs, and (viii) benefit from classic artificial
intelligence by taking advantage of quantum artificial intelligence for classic software testing
debugging.

8.1.6 Quantum Software Engineering and Artificial Intelligence.

State of the Art. Quantum for artificial intelligence leverages quantum computing to improve artifi-
cial intelligence algorithms, such as speeding up machine learning algorithms [20], implementing
neural networks with quantum circuits [81], and applying quantum algorithms (for instance, quan-
tum approximate optimization algorithm and variational quantum eigensolver) to solve complex
optimization problems directly relevant to artificial intelligence tasks. Various approaches to ar-
tificial intelligence for quantum software engineering aim to power quantum software developers
with large language model-based code assistants to lower the quantum programming learning
curve. Some artificial intelligence approaches aim to mitigate noise in quantum software output to
facilitate quantum software testing.

Challenges and Trends. A main open challenge is the use of artificial intelligence to generate
quantumprograms and optimize quantum circuits, as well as to educate and train the next generation
of quantum software engineers. A complementary challenge is the definition of quantum algorithms
to efficiently address search-based optimization tasks in software engineering, by suitably addressing
the unavailability of sufficient and high-quality training data and the lack of large and real-world
quantum applications. Murillo et al.’s [134] paper in this special issue discusses the challenge of
artificial intelligence and hybrid artificial intelligence-quantum workflows for quantum circuit
optimization and quantum error mitigation and correction.

The integration of artificial intelligence and quantum software engineering is a multidisciplinary
effort, which is subject to advances in quantum hardware, innovations in quantum algorithms, the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:41

availability of high-quality training data, and the advances of quantum software engineering in
developing quantum applications.

8.2 Roadmap
—What system thinking for quantum software engineering? Quantum software engineering is
complex and requires a holistic and interdisciplinary cross-layer vision. System thinking
has been around since the seventh decade of the last century as a way of making sense
of the world’s complexity from a holistic rather than a partitioned viewpoint, the typical
computational thinking that we often practice. We need a system thinking perspective to
mitigate challenges of scoping, enable large-scale development, and manage structural change
impacts [58, 152].

—How to align quantum software engineering with classic software engineering? We need to align
quantum software engineering with classic software engineering to define hybrid quantum-
classic software systems, a key trend in quantum software engineering, and to ensure that
both computing paradigms can work together by optimally leveraging both paradigms and
supporting the evolution of quantum hardware with smooth transitions.

—How to assess the energy efficiency of quantum software systems? Quantum computing is
extremely energy demanding, and energy efficiency plays a key role for the large-scale usage
of quantum software systems. We need an increase in efficiency that often comes from a
rebound effect in terms of the usage of the primary source [4].

—How to educate quantum software engineers? We need new curricula to educate the next
generation of quantum software engineers. We need to extend computer science curricula
with the core curriculum foundations of quantum mechanics, linear algebra, and system
thinking.

9 2030 Research Horizon
This special issue outlines the research frontier of software engineering toward 2030 and beyond.
Here we summarize the key issues that challenge software engineering research and practice, and
that we identify and discuss in this editorial. The many papers in this special issue flesh out the
main challenges in different areas of software engineering from various perspectives, aiming to
offer a broad viewpoint of the open challenges and mitigate the risks of biases. We identify the
main challenges in seven hot areas:

—Artificial Intelligence and Software Engineering: Artificial intelligence is dramatically transform-
ing the software engineering paradigms across the board, not only in tooling and automation,
but also in developer collaboration and decision-making. We envision a dramatic paradigm
shift in software engineering. The core challenge is:
What software engineering paradigm in the artificial intelligence era?
Thedetailed concerns are about domain specific design patterns, contamination-free benchmarks,
software engineering life cycles, and interpretability techniques

—Human Aspects and Software Engineering: Human aspects in developing and using artificial
intelligence systems shape the way artificial intelligence interacts with society, and raise
ethical, educational, and inclusiveness issues. We envision a completely new role for both
software engineers, who design and develop software systems, and humans, who use artificial
intelligence-powered software systems. Artificial intelligence botswill be active teammates and
not just tools for software engineers. Humans will be active elements of software ecosystems
and not mere users of software systems. The core challenges are:
What role of software engineers?

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

118:42 M. Pezzè et al.

What role of humans in artificial intelligence-powered ecosystems?
The detailed concerns are about hybrid human–artificial intelligence teams, equitable and
socially responsible artificial intelligence-powered software systems, transparency, user control,
privacy, and adaptability, computational empathy, adaptability to evolving needs, and code of
ethics.

—Sustainable Software Engineering: Software and artificial intelligence systems increasingly
impact sustainability. At the same time, artificial intelligence-powered software systems
offer enormous opportunities to improve sustainability. We envision a major impact of both
sustainability in software engineering, that is, green software engineering, and software
engineering for sustainability, that is, the role of software engineering in sustainability. The
core challenges are:
What sustainability in software engineering?
What software engineering for sustainability?
Thedetailed concerns are about interdisciplinary collaboration,KPIs, education for sustainability,
and ethical and sustainable artificial intelligence.

—Automatic Programming: Automatic programming is shifting the focus from programming at
scale to programmingwith trust.We envision artificial intelligence-powered system generating
large-scale programs from artifacts in natural language as well as other human accessible
means that describe humans’ needs. The role of software engineers and developers will shift
from designing and programming code to controlling the front-end artificial intelligence-
powered programmer, and certifying the back-end final automatically generated programs.
The core challenge is:
What automatic programming for generating useful and trustworthy software systems?
The detailed concerns are about scalable automatic programming, integration of automatically
generated code with human-designed and legacy code, transparent and trustworthy automatic
code generation, auditing automatically generated code, trustworthy and ethical automatically
generated code.

—Security and Software Engineering: Artificial intelligence opens new opportunities for and
poses a threat to security. On one side, there is increased automation via the use of large
language models in core security technologies to protect critical digital infrastructures. This
includes techniques for vulnerability detection as well as vulnerability remediation. On the
other side, automatically generated code opens new challenges to security. We envision
artificial intelligence-powered tools to protect software ecosystems under human control. The
core challenges are:
What artificial intelligence-powered approaches to protect critical digital infrastructures?
How to prevent security breaches in automatically generated code?
The detailed concerns are about combining large language models and neural networks with
classic vulnerability analysis, trustworthy automatic bug detection and fix, vulnerability issues
in automatically generated code.

—Verification and Validation: Artificial intelligence offers opportunities and raises new chal-
lenges for verification and validation. On one side, artificial intelligence enhances automatic
testing and verification. On the other side, both artificial intelligence-powered ecosystems
and automatically generated code challenge quality engineers with new types of bugs. We
envision autonomic testing tools that continuously check both functional and non-functional
properties and automatically fix bugs that emerge while software ecosystems evolve and
adapt. The main challenge is:
How to reveal functional and non-functional bugs that emerge in production in human-centric
cyber-physical ecosystems?

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

A 2030 Roadmap for Software Engineering 118:43

The detailed concerns are about automatically generating valid test suites, assessing automati-
cally generated code, verifying non-functional properties, verifying cyber-physical ecosystems,
verifying evolving and adaptive systems, verifying human centric software ecosystems.

—Quantum Software Engineering: Quantum computing upsets the programming landscape
with new challenges for engineering software for quantum clusters. Quantum computing
violates the core hypothesis of all classic software engineering approaches and requires
new approaches at every stage of the development process. We envision a new quantum
engineering paradigm to efficiently program large quantum computers. The main challenge is
as follows.
What paradigm for engineering quantum software?
The detailed concerns are about system thinking for an explicit cross-layer vision, aligning
quantum software with classic software engineering, assessing the energy efficiency of quantum
software systems.

We live in a fast-changing era, and any roadmap quickly ages. We aim to offer a living roadmap
that adjusts according to progress and innovation. We will incrementally update the roadmap with
a community effort that we will collect with targeted events and workshops, and we will share the
updated roadmap in incremental ACM TOSEM special issues.

References
[1] Silvia Abrahão, John Grundy, Mauro Pezzè, Margaret-Anne Storey, and Damian Andrew Tamburri. 2025. Software

engineering by and for humans in an AI era. ACM Transaction on Software Engineering and Methodology, 2030
Roadmap Special Issue, 1049-33X.

[2] Zeynep Akata, Dan Balliet, Maarten de Rijke, Frank Dignum, Virginia Dignum, Guszti Eiben, Antske Fokkens,
Davide Grossi, Koen V. Hindriks, Holger H. Hoos, et al. 2020. A research agenda for hybrid intelligence: Augmenting
human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence. Computer 53, 8
(2020), 18–28. DOI: https://doi.org/10.1109/MC.2020.2996587

[3] Mohammad Alahmadi, Abdulkarim Khormi, Biswas Parajuli, Jonathan Hassel, Sonia Haiduc, and Piyush Kumar.
2020. Code localization in programming screencasts. Empirical Software Engineering 25, 2 (2020), 1536–1572.

[4] Blake Alcott. 2005. Jevons’ paradox. Ecological Economics 54, 1 (2005), 9–21.
[5] Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engineering meets quantum computing. Communications

of the ACM 65, 4 (2022), 84–88. DOI: https://doi.org/10.1145/3512340
[6] Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna Harper, Alexandru

Marginean, Shubho Sengupta, and Eddy Wang. 2024. Automated unit test improvement using large language
models at meta. In Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software
Engineering (FSE ’24). ACM, New York, NY, 185–196. DOI: https://doi.org/10.1145/3663529.3663839

[7] Saleema Amershi, Daniel S. Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh,
Shamsi T. Iqbal, Paul N. Bennett, Kori Inkpen, et al. 2019. Guidelines for human-AI interaction. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). Stephen A. Brewster, Geraldine Fitzpatrick,
Anna L. Cox, and Vassilis Kostakos (Eds.), ACM, 3. DOI: https://doi.org/10.1145/3290605.3300233

[8] Wesley Assunção, Luciano Marchezan, Lawrence Arkoh, Alexander Egyed, and Rudolf Ramler. 2025. Contempo-
rary software modernization: Strategies, driving forces, and research opportunities. ACM Transaction on Software
Engineering and Methodology 2030 Roadmap Special Issue, 1049-331X.

[9] Marco Autili, Martina De Sanctis, Paola Inverardi, and Patrizio Pelliccione. 2025. Engineering digital systems for
humanity: A research roadmap. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special
Issue, 1049-331X.

[10] C. L. Baker, R. Saxe, and J. Tenenbaum. 2009. Action understanding as inverse planning. Cognition 113, 3 (2009),
329–349.

[11] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014. The oracle problem in software
testing: A survey. IEEE Transactions on Software Engineering 41, 5 (2014), 507–525.

[12] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,
Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, et al. 2020. Explainable artificial intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58, C (2020),
82–115. DOI: https://doi.org/10.1016/j.inffus.2019.12.012

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1145/3512340
https://doi.org/10.1145/3663529.3663839
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1016/j.inffus.2019.12.012

118:44 M. Pezzè et al.

[13] Christoph Becker. 2023. Insolvent: How to Reorient Computing for Just Sustainability . MIT Press.
[14] Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc, Steve M. Easterbrook, Birgit Penzenstadler,

Norbet Seyff, and Colin C. Venters. 2015. Requirements: The key to sustainability. IEEE Software 33, 1 (2015), 56–65.
[15] Christoph Becker, Ruzanna Chitchyan, Leticia Duboc, Steve Easterbrook, Birgit Penzenstadler, Norbert Seyff, and

Colin C. Venters. 2015. Sustainability design and software: The Karlskrona manifesto. In Proceedings of the 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. IEEE, Vol. 2, 467–476.

[16] Antonia Bertolino, Pietro Braione, Guglielmo De Angelis, Luca Gazzola, Fitsum Meshesha Kifetew, Leonardo
Mariani, Matteo Orrù, Mauro Pezzè, Roberto Pietrantuono, Stefano Russo, et al. 2022. A survey of field-based testing
techniques. ACM Computing Surveys 54, 5 (2022), 1–39. DOI: https://doi.org/10.1145/3447240

[17] Stefanie Betz and Birgit Penzenstadler. 2025. With great power comes great responsibility: The role of software
engineers. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue, 1049-331X.

[18] Stefanie Betz, Birgit Penzenstadler, Leticia Duboc, Ruzanna Chitchyan, Sedef Akinli Kocak, Ian Brooks, Shola
Oyedeji, Jari Porras, Norbert Seyff, and Colin C. Venters. 2024. Lessons learned from developing a sustainability
awareness framework for software engineering using design science. ACM Transactions on Software Engineering and
Methodology 33, 5 (2024), 1–39.

[19] Shreya Bhatia, Tarushi Gandhi, Dhruv Kumar, and Pankaj Jalote. 2024. Unit test generation using generative AI: A
comparative performance analysis of autogeneration tools. In Proceedings of the 1st International Workshop on Large
Language Models for Code (LLM4Code’24). ACM, New York, NY, 54–61. DOI: https://doi.org/10.1145/3643795.3648396

[20] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum
machine learning. Nature 549, 7671 (2017), 195–202.

[21] Christian Birchler, Sajad Khatiri, Pooja Rani, Timo Kehrer, and Sebastiano Panichella. 2025. A roadmap for simulation-
based testing of autonomous cyber-physical systems: Challenges and future direction. ACM Transaction on Software
Engineering and Methodology 2030 Roadmap Special Issue.

[22] Arianna Blasi, Alessandra Gorla, Michael D. Ernst, andMauro Pezzè. 2022. Call memaybe: Using NLP to automatically
generate unit test cases respecting temporal constraints. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’22). ACM, 19:1–19:11. DOI: https://doi.org/10.1145/3551349.3556961

[23] Michael Brooks. 2023. The race to find quantum computing’s sweet spot. Nature 617, 7962 (May 2023), S1–S3.
DOI:10.1038/d41586-023-01692-9

[24] Gro Harlem Brundtland. 1987. Our Common Future World Commission on Environment and Developement . UN World
Commission on Environment and Development.

[25] Lola Burgueño, Davide Di Ruscio, Houari Sahraoui, and Manuel WImmer. 2025. Automation in model-driven
engineering: A look back and ahead. ACM Transaction on Software Engineering and Methodology 2030 Roadmap
Special Issue, 1049-331X.

[26] Marcel Böhme, Eric Bodden, Tevfik Bultan, Cristian Cadar, Yang Liu, and Giuseppe Scanniello. 2025. Software security
analysis in 2030 and beyond: A research roadmap. ACM Transaction on Software Engineering and Methodology 2030
Roadmap Special Issue, 1049-331X.

[27] Coral Calero and Mario Piattini. 2015. Green in Software Engineering, Vol. 3, Springer.
[28] Javier Cámara, Javier Troya, Lola Burgueño, and Antonio Vallecillo. 2023. On the assessment of generative AI in

modeling tasks: An experience report with ChatGPT and UML. Software and Systems Modeling 22, 3 (2023), 781–793.
[29] Roberto Casadei, Gianluca Aguzzi, Giorgio Audrito, Ferruccio Damiani, Danilo Pianini, Giordano Scarso, Gianluca

Torta, and Mirko Viroli. 2025. Software engineering for collective cyber-physical ecosystems. ACM Transaction on
Software Engineering and Methodology 2030 Roadmap Special Issue, 1049-331X.

[30] Casey Casalnuovo, Kenji Sagae, and Prem Devanbu. 2019. Studying the difference between natural and programming
language corpora. Empirical Software Engineering 24, 4 (2019), 1823–1868. DOI: https://doi.org/10.1007/s10664-018-
9669-7

[31] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald Pinckney, Ming-Ho
Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, et al. 2022. MultiPL-E: A scalable and extensible approach
to benchmarking neural code generation. arXiv:2208.08227. Retrieved from http://arxiv.org/abs/2208.08227

[32] Johan Cederbladh, Antonio Cicchetti, and Robbert Jongeling. n.d. A road-map to readily available early validation &
verification of system behaviour in model-based systems engineering using software engineering best practices.
ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue, 1049-331X.

[33] Alexander Chatzigeorgiou, Iftekar Ahmed, Haipeng Cai, Mauro Pezzè, and Denys Poshyvanyk. 2024. Artificial intel-
ligence for software engineering: The journey so far and the road ahead. ACM Transactions on Software Engineering
and Methodology 34 (2024), 9.

[34] Chunyang Chen, Ting Su, GuozhuMeng, Zhenchang Xing, and Yang Liu. 2018. From UI design image to GUI skeleton:
A neural machine translator to bootstrap mobile GUI implementation. In Proceedings of the 40th International
Conference on Software Engineering, 665–676.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1145/3447240
https://doi.org/10.1145/3643795.3648396
https://doi.org/10.1145/3551349.3556961
https://doi.org/10.1007/s10664-018-9669-7
https://doi.org/10.1007/s10664-018-9669-7
http://arXiv:2208.08227
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227

A 2030 Roadmap for Software Engineering 118:45

[35] Daihang Chen, Yonghui Liu, Mingyi Zhou, Yanjie Zhao, HaoyuWang, Shuai Wang, Xiao Chen, Tegawende Bissyande,
Jacques Klein, and Li Li. 2025. LLM for mobile: An initial roadmap. ACM Transaction on Software Engineering and
Methodology 2030 Roadmap Special Issue, 1049-331X.

[36] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu, Yingnong Dang,
and Dongmei Zhang. 2019. Continuous incident triage for large-scale online service systems. In Proceed-
ings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,
364–375.

[37] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on
code. arXiv:2107.03374. Retrieved from http://arxiv.org/abs/2107.03374

[38] Tsong Y. Chen, Shing C. Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing: A new approach for generating
next test cases. arXiv:2002.12543. Retrieved from https://arxiv.org/abs/2002.12543

[39] Xinyun Chen, Chang Liu, and Dawn Song.2018. Execution-guided neural program synthesis. In Proceedings of the
International Conference on Learning Representations.

[40] Yuxing Cheng, Yi Chang, and Yuan Wu. 2025. A survey on data contamination for large language models.
arXiv:2502.14425. Retrieved from https://arxiv.org/abs/2502.14425

[41] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad Aghajani, Denys Poshyvanyk,
Massimiliano Di Penta, and Gabriele Bavota. 2021. An empirical study on the usage of transformer models for code
completion. arXiv:2108.01585. Retrieved from https://arxiv.org/abs/2108.01585

[42] Emilia Cioroaica, Thomas Kuhn, and Thomas Bauer. 2018. Prototyping automotive smart ecosystems. In Proceedings
of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops. IEEE Computer
Society, 255–262. DOI: https://doi.org/10.1109/DSN-W.2018.00072

[43] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. 2021. Counterfactual explanations for models of
code. arXiv:2111.05711. Retrieved from https://arxiv.org/abs/2111.05711

[44] Jane Cleland-Huang, Ankit Agrawal, Michael Vierhauser, Michael Murphy, and Mike Prieto. 2022. Extending MAPE-
K to support human-machine teaming. In Proceedings of the International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS ’22). Bradley R.Schmerl, MartinaMaggio, and JavierCámara (Eds.),
ACM/IEEE, 120–131. DOI: https://doi.org/10.1145/3524844.3528054

[45] Luis Cruz, Xavier Franch, and Silverio Martínez-Fernández. 2025. Innovating for tomorrow: The convergence of SE
and green AI. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue, 1049-331X.

[46] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh, Michel C. Desmarais, and Zhen Ming
Jack Jiang. 2023. Github copilot ai pair programmer: Asset or liability? Journal of Systems and Software 203 (2023),
111734.

[47] Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C. Desmarais. 2024.
Effective test generation using pre-trained large language models and mutation testing. Information and Software
Technology 171, C (2024), 107468. DOI: https://doi.org/10.1016/j.infsof.2024.107468

[48] Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2018. Explainable software analytics. In Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER ’18). ACM, New York,
NY, 53–56. DOI: https://doi.org/10.1145/3183399.3183424

[49] Eliot Zackrone, Beiza Eken, Michal Ernst, Mauro Pezzè, Davide Molinelli, and Alberto Martin-Lopez. 2025. Tratto: A
neuro-symbolic approach to deriving axiomatic test oracles. In Proceedings of the ACM ISSTA International Symposium
on Software Testing and Analysis.

[50] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley R. Schmerl,
Gabriel Tamura, Norha M. Villegas, Thomas Vogel, et al. 2010. Software engineering for self-adaptive systems:
A second research roadmap. In Proceedings of the International Seminar on Software Engineering for Self-Adaptive
Systems II . Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw (Eds.), Lecture Notes in Computer
Science, Vol. 7475 , Springer, 1–32. DOI: https://doi.org/10.1007/978-3-642-35813-5_1

[51] Santos de Souza Ronnie, Felipe Fronchetti, Sávio Freire, and Rodrigo Spinola. 2025. Software fairness debt: Building
a research agenda for addressing bias in AI systems. ACM Transaction on Software Engineering and Methodology 2030
Roadmap Special Issue, 1049-331X.

[52] Prem Devanbu, Matthew Dwyer, Sebastian Elbaum, Michael Lowry, Kevin Moran, Denys Poshyvanyk, Baishakhi
Ray, Rishabh Singh, and Xiangyu Zhang. 2020. Deep learning & software engineering: State of research and future
directions. arXiv:2009.08525. Retrieved from https://arxiv.org/abs/2009.08525

[53] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu Lahiri. 2022. TOGA: A neural method for test
oracle generation. In Proceedings of the International Conference on Software Engineering (ICSE ’22). ACM. Retrieved
from https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

http://arXiv:2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2502.14425
https://arxiv.org/abs/2502.14425
https://arxiv.org/abs/2108.01585
https://arxiv.org/abs/2108.01585
https://doi.org/10.1109/DSN-W.2018.00072
https://arxiv.org/abs/2111.05711
https://arxiv.org/abs/2111.05711
https://doi.org/10.1145/3524844.3528054
https://doi.org/10.1016/j.infsof.2024.107468
https://doi.org/10.1145/3183399.3183424
https://doi.org/10.1007/978-3-642-35813-5_1
https://arxiv.org/abs/2009.08525
https://arxiv.org/abs/2009.08525
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/

118:46 M. Pezzè et al.

[54] Leticia Duboc, Birgit Penzenstadler, Jari Porras, Sedef Akinli Kocak, Stefanie Betz, Ruzanna Chitchyan, Ola Leifler,
Norbert Seyff, and Colin C. Venters. 2020. Requirements engineering for sustainability: An awareness framework for
designing software systems for a better tomorrow. Requirements Engineering 25, 4 (2020), 469–492.

[55] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical review of automated analysis tools
on 47,587 ethereum smart contracts. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE ’20). ACM, New York, NY, 530–541. DOI: https://doi.org/10.1145/3377811.3380364

[56] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-
Dodds, Robert Lasenby, DawnDrain, Carol Chen, et al. 2022. Toymodels of superposition. arXiv:2209.10652. Retrieved
from https://arxiv.org/abs/2209.10652

[57] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. 2023. Automated repair of
programs from large language models. In Proceedings of the IEEE/ACM 45th International Conference on Software
Engineering (ICSE).

[58] Jay W. Forrester. 1987. Lessons from system dynamics modeling. System Dynamics Review 3, 2 (1987), 136–149.
[59] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite generation for object-oriented software.

In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering (ESEC/FSE ’11). ACM, New York, NY, 416–419. DOI: https://doi.org/10.1145/2025113.2025179

[60] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. 39, 2 (2013), 276–291.
[61] Alessio Gambi, Shreya Mathews, Benedikt Steininger, Mykhailo Poienko, and David Bobek. 2024. The flexcrash

platform for testing autonomous vehicles in mixed-traffic scenarios. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’24). Maria Christakis and Michael Pradel (Eds.),
ACM, 1811–1815. DOI: https://doi.org/10.1145/3650212.3685299

[62] Cuiyun Gao, Xing Hu, Shan Gao, Xin Xia, and Zhi Jin. 2025. The current challenges of software engineering in the
era of large language models. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special
Issue.

[63] S. Gao, X. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu. 2023. What makes good in-context demonstrations
for code intelligence tasks with LLMs? In Proceedings of the 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE Computer Society, Los Alamitos, CA, USA, 761–773. DOI: https:
//doi.org/10.1109/ASE56229.2023.00109

[64] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar Devanbu, Stephanie Forrest, andWestley
Weimer. 2015. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE Transactions on
Software Engineering 41, 12 (2015), 1236–1256.

[65] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Communications of the
ACM 62, 12 (2019), 56–65.

[66] Michael Grieves and John Vickers. 2017. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in
Complex Systems. Springer International Publishing, Cham, 85–113. DOI: https://doi.org/10.1007/978-3-319-38756-7_4

[67] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to comment “translation” data, metrics,
baselining & evaluation. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, 746–757.

[68] Jiazhen Gu, Jiaqi Wen, Zijian Wang, Pu Zhao, Chuan Luo, Yu Kang, Yangfan Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu,
et al. 2020. Efficient customer incident triage via linking with system incidents. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 1296–1307.

[69] AchimGuldner, Rabea Bender, Coral Calero, Giovanni S. Fernando, Markus Funke, Jens Gröger, LorenzM. Hilty, Julian
Hörnschemeyer, Geerd-Dietger Hoffmann, Dennis Junger, et al. 2024. Development and evaluation of a reference
measurement model for assessing the resource and energy efficiency of software products and components—Green
software measurement model (GSMM). Future Generation Computer Systems 155 (2024), 402–418.

[70] Guoxiang Guo, Aldeida Aleti, Neelofar Neelofar, and Chakkrit Tantithamthavorn. 2024. MORTAR: Metamorphic
multi-turn testing for LLM-based dialogue systems. arXiv:2412.15557. Retrieved from https://arxiv.org/abs/2412.15557

[71] Susmita Haldar and Luiz Fernando Capretz. 2024. Interpretable software maintenance and support effort prediction
using machine learning. In Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE Computer Society, Los Alamitos, CA, USA, 288–289. DOI: https:
//doi.org/10.1145/3639478.3643069

[72] George Halkos and Eleni-Christina Gkampoura. 2021. Where do we stand on the 17 sustainable development goals?
An overview on progress. Economic Analysis and Policy 70 (2021), 94–122.

[73] Junda He, Christoph Treude, and David Lo. 2025. LLM-based multi-agent systems for software engineering: Literature
review, vision and the road ahead. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special
Issue, 1049-331X.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1145/3377811.3380364
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/3650212.3685299
https://doi.org/10.1109/ASE56229.2023.00109
https://doi.org/10.1109/ASE56229.2023.00109
https://doi.org/10.1007/978-3-319-38756-7_4
https://arxiv.org/abs/2412.15557
https://arxiv.org/abs/2412.15557
https://doi.org/10.1145/3639478.3643069
https://doi.org/10.1145/3639478.3643069

A 2030 Roadmap for Software Engineering 118:47

[74] Shilin He, Xu Zhang, Pinjia He, YongXu, Liqun Li, Yu Kang,MinghuaMa, YiningWei, YingnongDang, Saravanakumar
Rajmohan, et al. 2022. An empirical study of log analysis at Microsoft. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, 1465–1476.

[75] Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, and Somesh Jha. 2024. Do
large code models understand programming concepts? Counterfactual analysis for code predicates. In Proceedings of
the 41st International Conference on Machine Learning (ICML’24). Article 753, 11 pages.

[76] Soneya Binta Hossain and Matthew Dwyer. 2024. TOGLL: Correct and strong test oracle generation with LLMs.
arXiv:2405.03786. Retrieved from https://arxiv.org/abs/2405.03786

[77] Hui Huang, Yingqi Qu, Hongli Zhou, Jing Liu, Muyun Yang, Bing Xu, and Tiejun Zhao. 2024. On the limitations of
fine-tuned judge models for LLM evaluation. arXiv:2403.02839. Retrieved from https://arxiv.org/abs/2403.02839

[78] Sonja Hyrynsalmi, Sebastian Baltes, Chris Brown, Rafael Prikladnicki, Perez Gema Rodriguez, Alexander Serebrenik,
Jocelyn Simmonds, Bianca Trinkenreich, and Yi Wang. 2025. Bridging gaps, building futures: Advancing software
developer diversity and inclusion through future-oriented research. ACM Transaction on Software Engineering and
Methodology 2030 Roadmap Special Issue, 1049-331X.

[79] Victoria Jackson, Bogdan Vasilescu, Daniel Russo, Paul Ralph, Rafael Prikladnicki, Maliheh Izadi, Sarah D’Angelo,
Sarah Inman, Anielle Lisboa, and André van der Hoek. 2025. The impact of generative AI on creativity in software
development: A research agenda. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special
Issue, 1049-331X.

[80] Gunel Jahangirova and Valerio Terragni. 2023. SBFT tool competition 2023 – Java test case generation track. In
Proceedings of the 2023 IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT), 61–64. DOI:
https://doi.org/10.1109/SBFT59156.2023.00025

[81] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. 2021. A co-design framework of neural networks and quantum circuits
towards quantum advantage. Nature Communications 12, 1 (2021), 579.

[82] Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, Hoa Khanh Dam, and John Grundy. 2022. An empirical study
of model-agnostic techniques for defect prediction models. IEEE Transactions on Software Engineering 48, 1 (2022),
166–185. DOI: https://doi.org/10.1109/TSE.2020.2982385

[83] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
2023. Swe-bench: Can language models resolve real-world github issues? arXiv:2310.06770. Retrieved from https:
//arxiv.org/abs/2310.06770

[84] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled
testing studies for java programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA ’14), 437–440.

[85] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and evaluating contextual
embedding of source code. In Proceedings of the International Conference on Machine Learning. PMLR, 5110–5121.

[86] Prabhjot Kaur, Samira Taghavi, Zhaofeng Tian, andWeisong Shi. 2021. A survey on simulators for testing self-driving
cars. In Proceedings of the 2021 4th International Conference on Connected and Autonomous Driving (MetroCAD),
62–70. DOI: https://doi.org/10.1109/MetroCAD51599.2021.00018

[87] Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50.
DOI: https://doi.org/10.1109/MC.2003.1160055

[88] Marcus Kessel and Colin Atkinson. 2025. Morescient GAI for software engineering. ACM Transaction on Software
Engineering and Methodology 2030 Roadmap Special Issue.

[89] Jayden Khakurel, Birgit Penzenstadler, Jari Porras, Antti Knutas, and Wenlu Zhang. 2018. The rise of artificial intelli-
gence under the lens of sustainability. Technologies 6, 4 (2018), 100. DOI: https://doi.org/10.3390/technologies6040100

[90] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel C. Briand. 2024. Impact of log parsing on deep
learning-based anomaly detection. Empirical Software Engineering 29, 6 (2024), 139.

[91] Dipin Khati, Yijin Liu, David N. Palacio, Yixuan Zhang, and Denys Poshyvanyk. 2025. Mapping the trust terrain:
LLMs in software engineering – Insights and perspectives. arXiv:2503.13793. Retrieved from https://arxiv.org/abs/
2503.13793

[92] Fatemeh Khayashi, Behnaz Jamasb, Reza Akbari, and Pirooz Shamsinejadbabaki. 2022. Deep learning methods for
software requirement classification: A performance study on the PURE dataset. arXiv:2211.05286. Retrieved from
https://arxiv.org/abs/2211.05286

[93] Jörg Kienzle, Gunter Mussbacher, Benoit Combemale, Lucy Bastin, Nelly Bencomo, Jean-Michel Bruel, Christoph
Becker, Stefanie Betz, Ruzanna Chitchyan, Betty H. C. Cheng, et al. 2020. Toward model-driven sustainability
evaluation. Communications of the ACM 63, 3 (2020), 80–91.

[94] Michael Konstantinou, Renzo Degiovanni, and Mike Papadakis. 2024. Do LLMs generate test oracles that capture the
actual or the expected program behaviour? arXiv:2410.21136. Retrieved from https://arxiv.org/abs/2410.21136

[95] Stefanie Kunkel, Frieder Schmelzle, Silke Niehoff, and Grischa Beier. 2023. More sustainable artificial intelligence
systems through stakeholder involvement? GAIA-Ecological Perspectives for Science and Society 32, 1 (2023), 64–70.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://arxiv.org/abs/2405.03786
https://arxiv.org/abs/2405.03786
https://arxiv.org/abs/2403.02839
https://arxiv.org/abs/2403.02839
https://doi.org/10.1109/SBFT59156.2023.00025
https://doi.org/10.1109/TSE.2020.2982385
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://doi.org/10.1109/MetroCAD51599.2021.00018
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.3390/technologies6040100
https://arxiv.org/abs/2503.13793
https://arxiv.org/abs/2503.13793
https://arxiv.org/abs/2503.13793
https://arxiv.org/abs/2503.13793
https://arxiv.org/abs/2211.05286
https://arxiv.org/abs/2211.05286
https://arxiv.org/abs/2410.21136
https://arxiv.org/abs/2410.21136

118:48 M. Pezzè et al.

[96] Dattatray Vishnu Kute, Biswajeet Pradhan, Nagesh Shukla, and Abdullah Alamri. 2021. Deep learning and explainable
artificial intelligence techniques applied for detecting money laundering – A critical review. IEEE Access 9 (2021),
82300–82317. DOI: https://doi.org/10.1109/ACCESS.2021.3086230

[97] Christoph König, Daniel Lang, and Ina Schaefer. 2025. Sustainable software engineering: Concepts, challenges, and
vision. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue.

[98] Patricia Lago, Nelly Condori Fernandez, Iffat Fatima, Markus Funke, and Ivano Malavolta. 2024. The sustainability
assessment framework toolkit: A decade of modeling experience. arXiv:2405.01391. Retrieved from https://arxiv.org/
abs/2405.01391

[99] Patricia Lago, Sedef Akinli Koçak, Ivica Crnkovic, and Birgit Penzenstadler. 2015. Framing sustainability as a property
of software quality. Communications of the ACM 58, 10 (2015), 70–78.

[100] Daniel J. Lang, Arnim Wiek, Matthias Bergmann, Michael Stauffacher, Pim Martens, Peter Moll, Mark Swilling, and
Christopher J. Thomas. 2012. Transdisciplinary research in sustainability science: Practice, principles, and challenges.
Sustainability Science 7, S1 (2012), 25–43.

[101] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved code summarization via a graph
neural network. In Proceedings of the 28th International Conference on Program Comprehension, 184–195.

[102] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. 2023. CodaMosa: Escaping coverage
plateaus in test generation with pre-trained large language models. In Proceedings of the 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 919–931. DOI: https://doi.org/10.1109/ICSE48619.2023.00085

[103] Vanessa Levesque. 2019. Sustainability Methods & Perspectives. Retrieved from https://pressbooks.pub/
sustainabilitymethods/

[104] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2017. Code completion with neural attention and pointer
networks. arXiv:1711.09573. Retrieved from https://arxiv.org/abs/1711.09573

[105] Mingyang Li, Ye Yang, Lin Shi, Qing Wang, Jun Hu, Xinhua Peng, Weimin Liao, and Guizhen Pi. 2020. Automated
extraction of requirement entities by leveraging LSTM-CRF and transfer learning. In Proceedings of the 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE, 208–219.

[106] Rui Li, Huai Liu, Pak-Lok Poon, Dave Towey, Chang Ai Sun, Zheng Zheng, Zhi Quan Zhou, and Tsong Chen. 2025.
Metamorphic relation generation: State of the art and research directions. ACM Transaction on Software Engineering
and Methodology 2030 Roadmap Special Issue (April 2025).

[107] Wei Li, Haozhe Qin, Shuhan Yan, Beijun Shen, and Yuting Chen. 2020. Learning code-query interaction for enhancing
code searches. In Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 115–126.

[108] Yihao Li, Pan Liu, Haiyang Wang, Jie Chu, and W. Eric Wong. 2025. Evaluating large language models for software
testing. Computer Standards & Interfaces 93 (2025), 103942. DOI: https://doi.org/10.1016/j.csi.2024.103942

[109] J. C. R. Licklider. 1960. Man-computer symbiosis. IRE Transactions on Human Factors in Electronics HFE-1 HFE-1, 1
(1960), 4–11. DOI: https://doi.org/10.1109/THFE2.1960.4503259

[110] Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023. Improving
ChatGPT prompt for code generation. arXiv:2305.08360. Retrieved from https://arxiv.org/abs/2305.08360

[111] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated by ChatGPT
really correct? Rigorous evaluation of large language models for code generation. arXiv:2305.01210. Retrieved from
https://arxiv.org/abs/2305.01210

[112] Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and Li Li. 2024. On the reliability and explainability of language
models for program generation. arXiv:2302.09587. Retrieved from https://arxiv.org/abs/2302.09587

[113] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain,
Daxin Jiang, Duyu Tang, et al. 2021. CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. arXiv:2102.04664. Retrieved from https://arxiv.org/abs/2102.04664

[114] Dipeeka Luitel, Shabnam Hassani, and Mehrdad Sabetzadeh. 2023. Improving requirements completeness: Automated
assistance through large language models. arXiv:2308.03784. Retrieved from https://arxiv.org/abs/2308.03784

[115] Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: Automated unit test generation for python. In Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings (ICSE ’22). ACM, New
York, NY, 168–172. DOI: https://doi.org/10.1145/3510454.3516829

[116] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the
31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook,
NY, USA, 4768–4777.

[117] Michael Lyu, Ray Baishakhi Ray, Abhik Roychoudhury, Shin Hwei Tan, and Patanamon Thongtanunam. 2025. Auto-
matic programming: Large language models and beyond. ACM Transaction on Software Engineering and Methodology
2030 Roadmap Special Issue.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1109/ACCESS.2021.3086230
https://arxiv.org/abs/2405.01391
https://arxiv.org/abs/2405.01391
https://arxiv.org/abs/2405.01391
https://arxiv.org/abs/2405.01391
https://doi.org/10.1109/ICSE48619.2023.00085
https://pressbooks.pub/sustainabilitymethods/
https://pressbooks.pub/sustainabilitymethods/
https://pressbooks.pub/sustainabilitymethods/
https://pressbooks.pub/sustainabilitymethods/
https://arxiv.org/abs/1711.09573
https://arxiv.org/abs/1711.09573
https://doi.org/10.1016/j.csi.2024.103942
https://doi.org/10.1109/THFE2.1960.4503259
https://arxiv.org/abs/2305.08360
https://arxiv.org/abs/2305.08360
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2302.09587
https://arxiv.org/abs/2302.09587
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2308.03784
https://arxiv.org/abs/2308.03784
https://doi.org/10.1145/3510454.3516829

A 2030 Roadmap for Software Engineering 118:49

[118] Jing Ma, Xiaobo Che, Yanqiang Li, and Edmund M.-K. Lai. 2021. Traffic scenarios for automated vehicle testing: A re-
view of description languages and systems. Machines 9, 12 (2021), 342. DOI: https://doi.org/10.3390/machines9120342

[119] Wei Ma, Shangqing Liu, Mengjie Zhao, Xiaofei Xie, Wenhan Wang, Qiang Hu, Jie Zhang, and Yang Liu. 2024.
Unveiling code pre-trained models: Investigating syntax and semantics capacities. arXiv:2212.10017. Retrieved from
https://arxiv.org/abs/2212.10017

[120] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: Inferring JavaScript function types from natural
language information. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 304–315.

[121] Zohar Manna and Richard J. Waldinger. 1971. Toward automatic program synthesis. Communications of the ACM 14,
3 (1971), 151–165. DOI: https://doi.org/10.1145/362566.362568

[122] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino, Denys Poshyvanyk, Rocco Oliveto,
and Gabriele Bavota. 2022. Using transfer learning for code-related tasks. arXiv:2206.08574. Retrieved from https:
//arxiv.org/abs/2206.08574

[123] Antonio Mastropaolo, Camilo Escobar-Velásquez, and Mario Linares-Vásquez. 2025. From triumph to uncertainty:
The journey of software engineering in the AI era. ACM Transaction on Software Engineering and Methodology 2030
Roadmap Special Issue.

[124] Marshall McLuhan. 1977. Laws of the media. ETC: A Review of General Semantics 34, 2 (1977), 173–179. DOI:
https://doi.org/10.20944/preprints202104.0526.v1

[125] Donella H. Meadows, Dennis L. Meadows, Jørgen Randers, and William W. Behrens III. 1972. The Limits to Growth -
Club of Rome. Retrieved from https://policycommons.net/artifacts/1529440/the-limits-to-growth/2219251/

[126] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024. Large language model guided protocol
fuzzing. In Proceedings of the 31st Annual Network and Distributed System Security Symposium (NDSS).

[127] Manoranjan Mishra, Sudarsan Desul, Celso Augusto Guimarães Santos, Shailendra Kumar Mishra, Abu Hena Mustafa
Kamal, Shreerup Goswami, Ahmed Mukalazi Kalumba, Ramakrishna Biswal, Richarde Marques da Silva, Carlos
Antonio Costa Dos Santos, et al. 2024. A bibliometric analysis of sustainable development goals (SDGs): A review of
progress, challenges, and opportunities. Environment, Development and Sustainability 26, 5 (2024), 1–43.

[128] Ahmad Haji Mohammadkhani, Chakkrit Tantithamthavorn, and Hadi Hemmati. 2023. Explainable AI for pre-trained
code models: What do they learn? When they do not work? arXiv:2211.12821. Retrieved from https://arxiv.org/abs/
2211.12821

[129] Facundo Molina, Alessandra Gorla, and Marcelo d’Amorim. 2025. Test oracle automation in the era of LLMs. ACM
Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue.

[130] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and Denys Poshyvanyk. 2020. Machine
learning-based prototyping of graphical user interfaces for mobile apps. IEEE Transactions on Software Engineering
46, 2 (2020), 196–221. DOI: https://doi.org/10.1109/TSE.2018.2844788

[131] Ana Moreira, Patricia Lago, Rogardt Heldal, Stefanie Betz, Ian Brooks, Rafael Capilla, Vlad Coroama, Leticia Duboc,
Joao Fernandes, Ola Leifler, et al. 2025. A roadmap for integrating sustainability into software engineering education.
ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue.

[132] Noura ElMoussa, DavideMolinelli, Mauro Pezzè, andMartin Tappler. 2021. Health of smart ecosystems. In Proceedings
of ESEC/FSE Ideas, Visions and Reflections (ESEC/FSE ’21). DOI: https://doi.org/10.1145/3468264.3473137

[133] Jose Juan M. Murillo, Frank Johanna Barzen, Shaukat Ali, Tao Yue, Paolo Arcaini, Ignacio García Ricardo Pérez,
Antonio Ruiz-Cortés, Antonio Brogi, Jianjun Zhao, Andriy Miranskyy, et al. 2025. Challenges of quantum software
engineering for the next decade: The road ahead. ACM Transactions on Software Engineering and Methodology
(TOSEM). arXiv:2404.06825. Retrieved from https://arxiv.org/abs/2404.06825

[134] Juan Manuel Murillo, Jose Garcia-Alonso, Enrique Moguel, Johanna Barzen, Frank Leymann, Shaukat Ali, Tao
Yue, Paolo Arcaini, Ricardo Perez-Castillo, Ignacio García-Rodríguez de Guzmán, et al. 2025. Quantum software
engineering: Roadmap and challenges ahead. ACM Transaction on Software Engineering and Methodology 2030
Roadmap Special Issue, 1049-331X.

[135] David Nader Palacio, Alejandro Velasco, Nathan Cooper, Alvaro Rodriguez, Kevin Moran, and Denys Poshyvanyk.
2024. Toward a theory of causation for interpreting neural code models. IEEE Transactions on Software Engineering
50, 5 (2024), 1215–1243. DOI: https://doi.org/10.1109/tse.2024.3379943

[136] Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. 2011. The GREENSOFT model: A reference model for
green and sustainable software and its engineering. Sustainable Computing: Informatics and Systems 1, 4 (2011),
294–304.

[137] Higor A. de Souza, Neilson C. L. Ramalho, and Marcos L. Chaim. 2025. Testing and debugging quantum programs:
The road to 2030. ACM Transactions on Software Engineering and Methodology (TOSEM) Issue TOSEM-2024-0251.

[138] Son Nguyen, Hung Phan, Trinh Le, and Tien N. Nguyen. 2020. Suggesting natural method names to check name
consistencies. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 1372–1384.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.3390/machines9120342
https://arxiv.org/abs/2212.10017
https://arxiv.org/abs/2212.10017
https://doi.org/10.1145/362566.362568
https://arxiv.org/abs/2206.08574
https://arxiv.org/abs/2206.08574
https://arxiv.org/abs/2206.08574
https://arxiv.org/abs/2206.08574
https://doi.org/10.20944/preprints202104.0526.v1
https://policycommons
https://policycommons
http://net/artifacts/1529440/the-limits-to-growth/2219251/
https://arxiv.org/abs/2211.12821
https://arxiv.org/abs/2211.12821
https://arxiv.org/abs/2211.12821
https://arxiv.org/abs/2211.12821
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1145/3468264.3473137
https://arxiv.org/abs/
https://arxiv.org/abs/
https://doi.org/10.1109/tse.2024.3379943

118:50 M. Pezzè et al.

[139] Curtis G. Northcutt, Anish Athalye, and Jonas Mueller. 2021. Pervasive label errors in test sets destabilize machine
learning benchmarks. arXiv:2103.14749. Retrieved from https://arxiv.org/abs/2103.14749

[140] Wendkuuni C. Ouedraogo, Kader Kabore, Haoye Tian, Yewei Song, Anil Koyuncu, Jacques Klein, David Lo, and
Tegawende F. Bissyande. 2024. LLMs and prompting for unit test generation: A large-scale evaluation. In Proceedings
of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE ’24). ACM, New York, NY,
2464–2465. DOI: https://doi.org/10.1145/3691620.3695330

[141] Shola Oyedeji, Ahmed Seffah, and Birgit Penzenstadler. 2018. A catalogue supporting software sustainability design.
Sustainability 10, 7 (2018), 2296.

[142] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed random testing for java. In Proceedings of
the Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications
Companion (OOPSLA ’07). ACM, New York, NY, 815–816. DOI: https://doi.org/10.1145/1297846.1297902

[143] David N. Palacio, Daniel Rodriguez-Cardenas, Alejandro Velasco, Dipin Khati, Kevin Moran, and Denys Poshy-
vanyk. 2024. Towards more trustworthy and interpretable LLMs for code through syntax-grounded explanations.
arXiv:2407.08983. Retrieved from https://arxiv.org/abs/2407.08983

[144] David N. Palacio, Alejandro Velasco, Daniel Rodriguez-Cardenas, Kevin Moran, and Denys Poshyvanyk. 2023.
Evaluating and explaining large language models for code using syntactic structures. arXiv:2308.03873. Retrieved
from https://arxiv.org/abs/2308.03873

[145] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele Merler, Boris
Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs introduced
by large language models while translating code. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, 1–13.

[146] Pat Pataranutaporn, Ruby Liu, Ed Finn, and Pattie Maes. 2023. Influencing human-AI interaction by priming beliefs
about AI can increase perceived trustworthiness, empathy and effectiveness. Nature Machine Intelligence 5, 10 (2023),
1076–1086. DOI: https://doi.org/10.1038/S42256-023-00720-7

[147] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large
language models. In Proceedings of the IEEE Symposium on Security and Privacy (SP), 2339–2356.

[148] Birgit Penzenstadler. 2013. Towards a definition of sustainability in and for software engineering. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, 1183–1185.

[149] Birgit Penzenstadler. 2014. Infusing green: Requirements engineering for green In and through software systems. In
Proceedings of the International Workshop on Requirements Engineering for Sustainable Systems (RE4SuSy@ RE), 44–53.

[150] Birgit Penzenstadler. 2018. Sustainability analysis and ease of learning in artifact-based requirements engineering:
The newest member of the family of studies (it’sa girl!). Information and Software Technology 95 (2018), 130–146.

[151] Birgit Penzenstadler, Stefanie Betz, Leticia Duboc, Norbert Seyff, Jari Porras, Shola Oyedeji, Ian Brooks, and Colin C.
Venters. 2021. Iterative sustainability impact assessment: When to propose? In Proceedings of the 2021 IEEE/ACM
International Workshop on Body of Knowledge for Software Sustainability (BoKSS). IEEE, 5–6.

[152] Birgit Penzenstadler, Leticia Duboc, Colin C. Venters, Stefanie Betz, Norbert Seyff, KrzsztofWnuk, Ruzanna Chitchyan,
Steve M. Easterbrook, and Christoph Becker. 2018. Software engineering for sustainability: Find the leverage points!
IEEE Software 35, 4 (2018), 22–33.

[153] Birgit Penzenstadler, Henning Femmer, and Debra Richardson. 2013. Who is the advocate? Stakeholders for sustain-
ability. In Proceedings of the 2013 2nd International Workshop on Green and Sustainable Software (GREENS). IEEE,
70–77.

[154] Birgit Penzenstadler and Andreas Fleischmann. 2011. Teach sustainability in software engineering? In Proceedings of
the 2011 24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T). IEEE, 454–458.

[155] Anne-Kathrin Peters, Rafael Capilla, Vlad Constantin Coroamă, Rogardt Heldal, Patricia Lago, Ola Leifler, Ana
Moreira, Joao Paulo Fernandes, Birgit Penzenstadler, Jari Porras, et al. 2024. Sustainability in computing education:
A systematic literature review. ACM Transactions on Computing Education 24, 1 (2024), 1–53.

[156] Mauro Pezzè and Michal Young. 2007. Software Testing and Analysis: Process, Principles and Techniques. Wiley.
[157] Johanna Pohl, Lorenz M. Hilty, and Matthias Finkbeiner. 2019. How LCA contributes to the environmental assessment

of higher order effects of ICT application: A review of different approaches. Journal of Cleaner Production 219 (2019),
698–712.

[158] Chanathip Pornprasit, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Michael Fu, and Patanamon Thongtanunam.
2021. PyExplainer: Explaining the predictions of just-in-time defect models. In Proceedings of the 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 407–418. DOI: https://doi.org/10.1109/ASE51524.
2021.9678763

[159] Jari Porras, Colin C. Venters, Birgit Penzenstadler, Leticia Duboc, Stefanie Betz, Norbert Seyff, Saeid Heshmatisafa,
and Shola Oyedeji. 2021. How could we have known? Anticipating sustainability effects of a software product. In
Proceedings of the 12th International Conference Software Business (ICSOB ’21). Springer, 10–17.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://arxiv.org/abs/2103.14749
https://arxiv.org/abs/2103.14749
https://doi.org/10.1145/3691620.3695330
https://doi.org/10.1145/1297846.1297902
https://arxiv.org/abs/2407.08983
https://arxiv.org/abs/2407.08983
https://arxiv.org/abs/2308.03873
https://arxiv.org/abs/2308.03873
https://doi.org/10.1038/S42256-023-00720-7
https://doi.org/10.1109/ASE51524.2021.9678763
https://doi.org/10.1109/ASE51524.2021.9678763

A 2030 Roadmap for Software Engineering 118:51

[160] Ketai Qiu, Niccolò Puccinelli, Matteo Ciniselli, and Luca Di Grazia. 2025. From today’s code to tomorrow’s symphony:
The AI transformation of developer’s routine by 2030. ACM Transaction on Software Engineering and Methodology
2030 Roadmap Special Issue.

[161] Anichur Rahman, Md Sazzad Hossain, Ghulam Muhammad, Dipanjali Kundu, Tanoy Debnath, Muaz Rahman,
Md Saikat Islam Khan, Prayag Tiwari, and Shahab S. Band. 2023. Federated learning-based AI approaches in
smart healthcare: concepts, taxonomies, challenges and open issues. Cluster Computing 26, 4 (2023), 1–41. DOI:
https://doi.org/10.1007/S10586-022-03658-4

[162] Neilson Ramalho, Higor Amario de Souza, and Marcos Lordello Chaim. 2025. Testing and debugging quantum
programs: The road to 2030. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue.

[163] Dezhi Ran, Mengzhou Wu, Wei Yang, and Tao Xie. 2025. Foundation model engineering: Engineering foundation
models just as engineering software. ACM Transaction on Software Engineering and Methodology 2030 Roadmap
Special Issue, 1049-331X.

[164] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should I trust you?”: Explaining the predictions
of any classifier. arXiv:1602.04938. Retrieved from https://arxiv.org/abs/1602.04938

[165] Jonathan G. Richens, Ciarán M. Lee, and Saurabh Johri. 2020. Improving the accuracy of medical diagnosis with
causal machine learning. Nature Communications 11, 1 (2020), 3923.

[166] Diana Robinson, Christian Cabrera, Andrew Gordon, Neil Lawrence, and Lars Mennen. 2025. Requirements are
all you need: The final frontier for End-User software engineering. ACM Transaction on Software Engineering and
Methodology 2030 Roadmap Special Issue.

[167] Daniel Rodriguez-Cardenas. 2024. Beyond accuracy and robustness metrics for large language models for code. In
Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion ’24). ACM, New York, NY, 159–161. DOI: https://doi.org/10.1145/3639478.3639792

[168] Daniel Rodriguez-Cardenas, David N. Palacio, Dipin Khati, Henry Burke, and Denys Poshyvanyk. 2023. Benchmarking
causal study to interpret large language models for source code. arXiv:2308.12415. Retrieved from https://arxiv.org/
abs/2308.12415

[169] Abhik Roychoudhury, Corina Pasareanu, Michael Pradel, and Baishakhi Ray. 2025. AI software engineer: Program-
ming with trust. arXiv:2502.13767. Retrieved from https://arxiv.org/abs/2502.13767

[170] Daniel Russo, Sebastian Baltes, Niels van Berkel, Paris Avgeriou, Fabio Calefato, Beatriz Cabrero Daniel, Gemma
Catolino, Jürgen Cito, Neil A. Ernst, Thomas Fritz, et al. 2024. Generative AI in software engineering must be
human-centered: The Copenhagen manifesto. Journal of System and Software 216 (2024), 112115. DOI: https://doi.
org/10.1016/J.JSS.2024.112115

[171] Jeffrey D. Sachs. 2012. From millennium development goals to sustainable development goals. The Lancet 379, 9832
(2012), 2206–2211.

[172] Jeffrey D. Sachs, Guido Schmidt-Traub, Mariana Mazzucato, Dirk Messner, Nebojsa Nakicenovic, and Johan Rock-
ström. 2019. Six transformations to achieve the sustainable development goals. Nature Sustainability 2, 9 (2019),
805–814.

[173] Mozhgan Salimiparsa, Surajsinh Parmar, San Lee, Choongmin Kim, Yonghwan Kim, and Jang Yong Kim. 2023.
Investigating poor performance regions of black boxes: LIME-based exploration in sepsis detection. arXiv:2306.12507.
Retrieved from https://arxiv.org/abs/2306.12507

[174] Theresia Ratih Dewi Saputri and Seok-Won Lee. 2020. Addressing sustainability in the requirements engineering
process: From elicitation to functional decomposition. Journal of Software: Evolution and Process 32, 8 (2020), e2254.

[175] Iqbal H. Sarker, Helge Janicke, Ahmad Mohsin, Asif Gill, and Leandros Maglaras. 2024. Explainable AI for cyberse-
curity automation, intelligence and trustworthiness in digital twin: Methods, taxonomy, challenges and prospects.
ICT Express 10, 4 (2024), 935–958. DOI: https://doi.org/10.1016/J.ICTE.2024.05.007

[176] J. Schneider-Hufschmidt, T. Kühme, and U. Malinowski. 1993. Adaptive User Interfaces: Principles and Practice. North
Holland, London.

[177] Lukas Schulte, Benjamin Ledel, and Steffen Herbold. 2024. Studying the explanations for the automated prediction
of bug and non-bug issues using LIME and SHAP. Empirical Software Engineering 29, 4 (2024), 29. DOI: https:
//doi.org/10.1007/s10664-024-10469-1

[178] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An empirical evaluation of using large language
models for automated unit test generation. IEEE Transactions on Software Engineering 50, 1 (2024), 85–105. DOI:
https://doi.org/10.1109/TSE.2023.3334955

[179] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A survey on metamorphic testing.
IEEE Transactions on Software Engineering 42, 9 (2016), 805–824. DOI: https://doi.org/10.1109/TSE.2016.2532875

[180] Norbert Seyff, Stefanie Betz, Leticia Duboc, Colin Venters, Christoph Becker, Ruzanna Chitchyan, Birgit Penzenstadler,
and Markus Nöbauer. 2018. Tailoring requirements negotiation to sustainability. In Proceedings of the 2018 IEEE 26th
International Requirements Engineering Conference (RE). IEEE, 304–314.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1007/S10586-022-03658-4
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.1145/3639478.3639792
https://arxiv.org/abs/2308.12415
https://arxiv.org/abs/2308.12415
https://arxiv.org/abs/2308.12415
https://arxiv.org/abs/2308.12415
https://arxiv.org/abs/2502.13767
https://arxiv.org/abs/2502.13767
https://doi.org/10.1016/J.JSS.2024.112115
https://doi.org/10.1016/J.JSS.2024.112115
https://arxiv.org/abs/2306.12507
https://arxiv.org/abs/2306.12507
https://doi.org/10.1016/J.ICTE.2024.05.007
https://doi.org/10.1007/s10664-024-10469-1
https://doi.org/10.1007/s10664-024-10469-1
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2016.2532875

118:52 M. Pezzè et al.

[181] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and Andrea Arcuri. 2015. Do automatically
generated unit tests find real faults? An empirical study of effectiveness and challenges (T). In Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 201–211. DOI: https:
//doi.org/10.1109/ASE.2015.86

[182] Jieke Shi, Zhou Yang, and David Lo. 2025. Efficient and green large language models for software engineering: Vision
and the road ahead. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue (April
2025).

[183] Seung Yeob Shin, Fabrizio Pastore, Domenico Bianculli, and Alexandra Baicoianu. 2024. Towards generating exe-
cutable metamorphic relations using large language models. arXiv:2401.17019. Retrieved from https://arxiv.org/abs/
2401.17019

[184] Trevor Stalnaker, NathanWintersgill, Oscar Chaparro, Laura A. Heymann, Massimiliano Di Penta, Daniel M. German,
and Denys Poshyvanyk. 2024. Developer perspectives on licensing and copyright issues arising from generative AI
for coding. arXiv:2411.10877. Retrieved from https://arxiv.org/abs/2411.10877

[185] Trevor Stalnaker, NathanWintersgill, Oscar Chaparro, Laura A. Heymann, Massimiliano Di Penta, Daniel M. German,
and Denys Poshyvanyk. 2025. The ML supply chain in the era of software 2.0: Lessons learned from hugging face.
arXiv:2502.04484. Retrieved from https://arxiv.org/abs/2502.04484

[186] Yongqiang Sun, Xiao-Liang Shen, and Kem Z. K. Zhang. 2023. Human-AI interaction. Data and Information Manage-
ment 7, 3 (2023), 100048. Retrieved from https://doi.org/10.1016/J.DIM.2023.100048

[187] Joseph Tainter. 2003. A framework for sustainability. World Futures 59, 3–4 (2003), 213–223.
[188] Gaigai Tang, Long Zhang, Feng Yang, Lianxiao Meng, Weipeng Cao, Meikang Qiu, Shuangyin Ren, Lin Yang, and

Huiqiang Wang. 2021. Interpretation of learning-based automatic source code vulnerability detection model using
LIME. In Proceedings of the 14th International Conference on Knowledge Science, Engineering and Management (KSEM
’21). Springer-Verlag, Berlin, 275–286. DOI: https://doi.org/10.1007/978-3-030-82153-1_23

[189] Valerio Terragni, Annie Vella, Partha Roop, and Kelly Blincoe. 2025.Apri.The future of AI-driven software engineering.
ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue.

[190] Hannes Thaller, Lukas Linsbauer, and Alexander Egyed. 2019. Feature maps: A comprehensible software representa-
tion for design pattern detection. In Proceedings of the 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 207–217. DOI: https://doi.org/10.1109/SANER.2019.8667978

[191] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and Tegawendé F. Bissyandé.
2023. Is ChatGPT the ultimate programming assistant – How far is it? arXiv:2304.11938. Retrieved from https:
//arxiv.org/abs/2304.11938

[192] Archana Tikayat Ray, Bjorn F. Cole, Olivia J. Pinon Fischer, Anirudh Prabhakara Bhat, Ryan T. White, and Dimitri N.
Mavris. 2023. Agile methodology for the standardization of engineering requirements using large language models.
Systems 11, 7 (2023), 352.

[193] Sergey Troshin and Nadezhda Chirkova. 2022. Probing pretrained models of source code. arXiv:2202.08975. Retrieved
from https://arxiv.org/abs/2202.08975

[194] Christos Tsigkanos, Pooja Rani, Sebastian Müller, and Timo Kehrer. 2023. Large language models:The next frontier for
variable discovery within metamorphic testing? In Proceedings of the 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 678–682. DOI: https://doi.org/10.1109/SANER56733.2023.00070

[195] Lam Nguyen Tung, Steven Cho, Xiaoning Du, Neelofar Neelofar, Valerio Terragni, Stefano Ruberto, and Aldeida
Aleti. 2024. Automated trustworthiness oracle generation for machine learning text classifiers. arXiv:2410.22663.
Retrieved from https://arxiv.org/abs/2410.22663

[196] Keyon Vafa, Yuntian Deng, David M. Blei, and Alexander M. Rush. 2021. Rationales for sequential predictions.
arXiv:2109.06387. Retrieved from https://arxiv.org/abs/2109.06387

[197] Aimee Van Wynsberghe. 2021. Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics 1, 3
(2021), 213–218.

[198] Alejandro Velasco, Aya Garryyeva, David N. Palacio, Antonio Mastropaolo, and Denys Poshyvanyk. 2025. Toward
neurosymbolic program comprehension. arXiv:2502.01806. Retrieved from https://arxiv.org/abs/2502.01806

[199] Alejandro Velasco, David N. Palacio, Daniel Rodriguez-Cardenas, and Denys Poshyvanyk. 2024. Which syntactic
capabilities are statistically learned by masked language models for code? In Proceedings of the 2024 ACM/IEEE 44th
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER’24). ACM, New York,
NY, 72–76. DOI: https://doi.org/10.1145/3639476.3639768

[200] Alejandro Velasco, Daniel Rodriguez-Cardenas, Luftar Rahman Alif, David N. Palacio, and Poshyvanyk Denys.2025.
How propense are large language models at producing code smells? A benchmarking study. arXiv:2412.18989.
Retrieved from https://arxiv.org/abs/2412.18989

[201] Colin Venters, L. M. S. Lau, Michael Griffiths, Violeta Holmes, Rupert Ward, Caroline Jay, Charlie Dibsdale, and Jie
Xu. 2014. The blind men and the elephant: Towards an empirical evaluation framework for software sustainability.
Journal of Open Research Software 2, 1 (2014), e8.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://arxiv.org/abs/2401.17019
https://arxiv.org/abs/2401.17019
https://arxiv.org/abs/2401.17019
https://arxiv.org/abs/2401.17019
https://arxiv.org/abs/2411.10877
https://arxiv.org/abs/2411.10877
https://arxiv.org/abs/2502.04484
https://arxiv.org/abs/2502.04484
https://doi.org/10.1016/J.DIM.2023.100048
https://doi.org/10.1016/J.DIM.2023.100048
https://doi.org/10.1007/978-3-030-82153-1_23
https://doi.org/10.1109/SANER.2019.8667978
https://arxiv.org/abs/2304.11938
https://arxiv.org/abs/2304.11938
https://arxiv.org/abs/2304.11938
https://arxiv.org/abs/2304.11938
https://arxiv.org/abs/2202.08975
https://arxiv.org/abs/2202.08975
https://doi.org/10.1109/SANER56733.2023.00070
https://arxiv.org/abs/2410.22663
https://arxiv.org/abs/2410.22663
https://arxiv.org/abs/2109.06387
https://arxiv.org/abs/2109.06387
https://arxiv.org/abs/2502.01806
https://arxiv.org/abs/2502.01806
https://doi.org/10.1145/3639476.3639768
https://arxiv.org/abs/2412.18989
https://arxiv.org/abs/2412.18989

A 2030 Roadmap for Software Engineering 118:53

[202] Colin C. Venters, Norbert Seyff, Christoph Becker, Stephanie Betz, Ruzanna Chitchyan, Leticia Duboc, Dan McIntyre,
and Birgit Penzenstadler. 2017. Characterising sustainability requirements: A new species. Red Herring, or Just an Odd
Fish, Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in
Society Track, 20–28.

[203] Colin C. Venters, Rafael Capilla, Stefanie Betz, Birgit Penzenstadler, Tom Crick, Steve Crouch, Elisa Yumi Naka-
gawa, Christoph Becker, and Carlos Carrillo. 2018. Software sustainability: Research and practice from a software
architecture viewpoint. Journal of Systems and Software 138 (2018), 174–188.

[204] Colin C. Venters, Rafael Capilla, Elisa Yumi Nakagawa, Stefanie Betz, Birgit Penzenstadler, Tom Crick, and Ian
Brooks. 2023. Sustainable software engineering: Reflections on advances in research and practice. Information and
Software Technology 164 (2023), 107316.

[205] Colin C. Venters, Caroline Jay, L. M. S. Lau, Michael K. Griffiths, Violeta Holmes, Rupert R. Ward, Jim Austin,
Charlie E. Dibsdale, and Jie Xu. 2014. Software sustainability: The modern tower of Babel. In Proceedings of the CEUR
Workshop 1216 (2014), 7–12.

[206] Colin C. Venters, Sedef Akinli Kocak, Stefanie Betz, Ian Brooks, Rafael Capilla, Ruzanna Chitchyan, Letícia Duboc,
Rogardt Heldal, Ana Moreira, Shola Oyedeji, et al. 2021. Software sustainability: Beyond the tower of babel. In
Proceedings of the 2021 IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability (BoKSS).
IEEE, 3–4.

[207] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software testing with
large language models: Survey, landscape, and vision. IEEE Transactions on Software Engineering 50, 4 (2024), 911–936.
DOI: https://doi.org/10.1109/TSE.2024.3368208

[208] Jun Wang, Li Zhang, Yanjun Huang, Jian Zhao, and Francesco Bella. 2020. Safety of autonomous vehicles. Journal of
Advanced Transportation 2020, 1 (2020), 1–13.

[209] Qing Wang, Junjie Wang, Mingyang Li, and Yawen Wang. 2025. A roadmap for software testing in open-
collaborative and AI-powered era. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special
Issue.

[210] Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar, Samson
Tan, Baishakhi Ray, Parminder Bhatia, et al. 2022. ReCode: Robustness evaluation of code generation models.
arXiv:2212.10264. Retrieved from http://arxiv.org/abs/2212.10264

[211] Shenao Wang, Yanjie Zhao, Xinyi Hou, and Haoyu Wang. 2025. Large language model supply chain: A research
agenda. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue.

[212] Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. 2018. Enhancing automated requirements traceability by
resolving polysemy. In Proceedings of the 2018 IEEE 26th International Requirements Engineering Conference (RE).
IEEE, 40–51. DOI: https://doi.org/10.1109/RE.2018.00-53

[213] Zeng Wang, Minghao Shao, Jitendra Bhandari, Likhitha Mankali, Ramesh Karri, Ozgur Sinanoglu, Muhammad
Shafique, and Johann Knechtel. 2025. VeriContaminated: Assessing LLM-driven verilog coding for data contamination.
arXiv:2503.13572. Retrieved from https://arxiv.org/abs/2503.13572

[214] Cody Watson, Nathan Cooper, David Nader-Palacio, Kevin Moran, and Denys Poshyvanyk. 2022. A systematic
literature review on the use of deep learning in software engineering research. ACM Transactions on Software
Engineering and Methodology 31, 2 (2022), 1–58. DOI: https://doi.org/10.1145/3485275

[215] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Hideaki Hata, and Kenichi
Matsumoto. 2022. Predicting defective lines using a model-agnostic technique. IEEE Transactions on Software
Engineering 48, 5 (2022), 1480–1496. DOI: https://doi.org/10.1109/TSE.2020.3023177

[216] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments
for code clone detection. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE ’16). ACM, New York, NY, 87–98. DOI: https://doi.org/10.1145/2970276.2970326

[217] Martin White, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshyvanyk. 2015. Toward deep learning
software repositories. In Proceedings of the 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
334–345. DOI: https://doi.org/10.1109/MSR.2015.38

[218] Kristian Wiklund, Sigrid Eldh, Daniel Sundmark, and Kristina Lundqvist. 2017. Impediments for software test
automation: A systematic literature review. Software Testing 27 (2017). Retrieved from https://api.semanticscholar.
org/CorpusID:32631031

[219] Laurie Williams, Giacomo Benedetti, Sivana Hamer, Ranindya Paramitha, Imranur Rahman, Mahzabin Tamanna,
Greg Tystahl, Nusrat Zahan, Patrick Morrison, Yasemin Acar, et al. 2025. Research directions in software
supply chain security. ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special
Issue.

[220] Jonas Paul Winkler, Jannis Grönberg, and Andreas Vogelsang. 2019. Predicting how to test requirements: An
automated approach. In Proceedings of the 2019 IEEE 27th International Requirements Engineering Conference (RE).
IEEE, 120–130. DOI: https://doi.org/10.1109/RE.2019.00023

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://doi.org/10.1109/TSE.2024.3368208
http://arxiv.org/abs/2212.10264
http://arxiv.org/abs/2212.10264
https://doi.org/10.1109/RE.2018.00-53
https://arxiv.org/abs/2503.13572
https://arxiv.org/abs/2503.13572
https://doi.org/10.1145/3485275
https://doi.org/10.1109/TSE.2020.3023177
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1109/MSR.2015.38
https://api.semanticscholar.org/CorpusID:32631031
https://api.semanticscholar.org/CorpusID:32631031
https://api.semanticscholar.org/CorpusID:32631031
https://api.semanticscholar.org/CorpusID:32631031
https://doi.org/10.1109/RE.2019.00023

118:54 M. Pezzè et al.

[221] Fangzhou Wu, Xiaogeng Liu, and Chaowei Xiao. 2023. DeceptPrompt: Exploiting LLM-driven code generation via
adversarial natural language instructions. arXiv:2312.04730. Retrieved from https://arxiv.org/abs/2312.04730

[222] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated program repair in the era of large pre-
trained language models. In Proceedings of the 45th International Conference on Software Engineering (ICSE ’23). IEEE
Press, 1482–1494. DOI: https://doi.org/10.1109/ICSE48619.2023.00129

[223] Chunqiu Steven Xia and Lingming Zhang. 2023.Conversational automated program repair . arXiv:2301.13246. Retrieved
from https://arxiv.org/abs/2301.13246

[224] Chunqiu Steven Xia and Lingming Zhang. 2024. Automated program repair via conversation: Fixing 162 out of 337
bugs for 0.42 each using ChatGPT. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2024). ACM, New York, NY, 819–831. DOI: https://doi.org/10.1145/3650212.3680323

[225] Mingxuan Xiao, Yan Xiao, Shunhui Ji, Yunhe Li, Lei Xue, and Pengcheng Zhang. 2025. ABFS: Natural robustness
testing for LLM-based NLP software. arXiv:2503.01319. Retrieved from https://arxiv.org/abs/2503.01319

[226] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A systematic evaluation of large
language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming
(MAPS 2022). ACM, New York, NY, 1–10. DOI: https://doi.org/10.1145/3520312.3534862

[227] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J. Hellendoorn. 2022. A systematic evaluation of large language
models of code. arXiv:2202.13169. Retrieved from http://arxiv.org/abs/2202.13169

[228] Junjielong Xu, Qinan Zhang, Zhiqing Zhong, Shilin He, Chaoyun Zhang, Qingwei Lin, Dan Pei, Pinjia He, Dongmei
Zhang, and Qi Zhang. 2025. OpenRCA: Can large language models locate the root cause of software failures? In
Proceedings of the 13th International Conference on Learning Representations (ICLR).

[229] Tingting Xu, Yun Miao, Chunrong Fang, Hanwei Qian, Xia Feng, Zhenpeng Chen, ChongWang, Jian Zhang, Weisong
Sun, Zhenyu Chen, et al. 2024. A prompt learning framework for source code summarization. arXiv:2312.16066.
Retrieved from https://arxiv.org/abs/2312.16066

[230] Boyang Yang, Haoye Tian, Weiguo Pian, Haoran Yu, Haitao Wang, Jacques Klein, Tegawendé F. Bissyandé, and
Shunfu Jin. 2024. CREF: An LLM-based conversational software repair framework for programming tutors. In
Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2024). ACM,
New York, NY, 882–894. DOI: https://doi.org/10.1145/3650212.3680328

[231] Fengyu Yang, Guangdong Zeng, Fa Zhong, Wei Zheng, and Peng Xiao. 2023. Interpretable software defect prediction
incorporating multiple rules. In Proceedings of the 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE Computer Society, Los Alamitos, CA, USA, 940–947. DOI: https://doi.org/10.1109/
SANER56733.2023.00114

[232] Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou, Guangtai Liang,
Qianxiang Wang, and Junjie Chen. 2024. On the evaluation of large language models in unit test generation.
In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE ’24). ACM,
New York, NY, 1607–1619. DOI: https://doi.org/10.1145/3691620.3695529

[233] Wei Yang, Yuan Yang, Wei Xiang, Lei Yuan, Kan Yu, Álvaro Hernández Alonso, Jesús Ureña, and Zhibo Pang. 2024.
Adaptive optimization federated learning enabled digital twins in industrial IoT. Journal of Industrial Information
Integration 41, 2024 (2024), 100645. DOI: https://doi.org/10.1016/J.JII.2024.100645

[234] Yanming Yang, Xin Xia, David Lo, and John Grundy. 2022. A survey on deep learning for software engineering. ACM
Computing Surveys, 54, 10s (2022), 1–73.

[235] Sixiang Ye, Zeyu Sun, Guoqing Wang, Liwei Guo, Qingyuan Liang, Zheng Li, and Yong Liu. 2025. Prompt alchemy:
Automatic prompt refinement for enhancing code generation. arXiv:2503.11085. Retrieved from https://arxiv.org/
abs/2503.11085

[236] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the quality of GitHub copilot’s code generation. In
Proceedings of the 18th International Conference on Predictive Models and Data Analytics in Software Engineering,
62–71.

[237] Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He. 2024. Deep
learning or classical machine learning? An empirical study on log-based anomaly detection. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering (ICSE), 1–13.

[238] Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin Peng, and Yiling Lou. 2024. Evaluating
and improving ChatGPT for unit test generation. Proceedings of the ACM on Software Engineering 1, FSE (2024),
1703–1726. DOI: https://doi.org/10.1145/3660783

[239] Tao Yue, Wolfgang Mauerer, Shaukat Ali, and Davide Taibi. 2023. Challenges and opportunities in quantum software
architecture. Software Architecture: Research Roadmaps from the Community , 1–23.

[240] Wojciech Zaremba and Greg Brockman. 2021. OpenAI Codex. Retrieved from https://openai.com/blog/openai-codex/
[241] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine learning testing: Survey, landscapes and horizons.

IEEE Transactions on Software Engineering 48, 1 (2022), 1–36. DOI: https://doi.org/10.1109/TSE.2019.2962027

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://arxiv.org/abs/2312.04730
https://arxiv.org/abs/2312.04730
https://doi.org/10.1109/ICSE48619.2023.00129
https://arxiv.org/abs/2301.13246
https://arxiv.org/abs/2301.13246
https://doi.org/10.1145/3650212.3680323
https://arxiv.org/abs/2503.01319
https://arxiv.org/abs/2503.01319
https://doi.org/10.1145/3520312.3534862
http://arXiv:2202.13169
http://arxiv.org/abs/2202.13169
http://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2312.16066
https://arxiv.org/abs/2312.16066
https://doi.org/10.1145/3650212.3680328
https://doi.org/10.1109/SANER56733.2023.00114
https://doi.org/10.1109/SANER56733.2023.00114
https://doi.org/10.1145/3691620.3695529
https://doi.org/10.1016/J.JII.2024.100645
https://arxiv.org/abs/2503.11085
https://arxiv.org/abs/2503.11085
https://arxiv.org/abs/2503.11085
https://arxiv.org/abs/2503.11085
https://doi.org/10.1145/3660783
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/
https://doi.org/10.1109/TSE.2019.2962027

A 2030 Roadmap for Software Engineering 118:55

[242] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury. 2024. AutoCodeRover: Autonomous program improvement.
arXiv:2405.02213. Retrieved from https://arxiv.org/abs/2405.02213

[243] Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang. 2025. LLM App Store Analysis: A Vision and Roadmap.
ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue (April 2025).

[244] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li,
Dacheng Li, Eric Xing, et al. 2023. Judging LLM-as-a-judge with mt-bench and chatbot arena. Advances in Neural
Information Processing Systems 36 (2023), 46595–46623.

[245] Tao Lin, Yaowen Zheng, Jingquan Ge, Jun Wang, Jacques Klein, Tegawende Bissyande, Yang Liu, Zhihao Lin, Wei
Ma, and Li Li. 2025. Open-source AI-based SE tools: Opportunities and challenges of collaborative software learning.
ACM Transaction on Software Engineering and Methodology 2030 Roadmap Special Issue.

[246] Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo. 2025. Large language model for vulnerability detection and
repair: Literature review and the road ahead. ACM Transaction on Software Engineering and Methodology 2030
Roadmap Special Issue. DOI: https://doi.org/10.1109/TSE.2018.2887384

[247] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2018. Fault analysis and debugging
of microservice systems: Industrial survey, benchmark system, and empirical study. IEEE Transactions on Software
Engineering 47, 2 (2018), 243–260. DOI: https://doi.org/10.1109/TSE.2018.2887384

Received 13 April 2025; revised 13 April 2025; accepted 16 April 2025

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 5, Article 118. Publication date: May 2025.

https://arxiv.org/abs/2405.02213
https://arxiv.org/abs/2405.02213
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384

	Abstract
	1 Introduction
	 Overview of the Editorial and the Special Issue
	 Organization of the Sections

	2 Artificial Intelligence for Software Engineering
	2.1 State of the Art and Trends
	2.2 Roadmap

	3 Software Engineering by and for Humans
	3.1 State of the Art and Practice
	3.2 Roadmap

	4 Sustainable Software Engineering
	4.1 State of the Art and Trends
	4.2 Roadmap

	5 Automatic Programming
	5.1 State of the Art and Trends
	5.2 Roadmap

	6 Security and Software Engineering
	6.1 State of the Art and Trends
	6.2 Roadmap

	7 Verification and Validation
	7.1 State of the Art
	7.2 Roadmap

	8 Quantum Software Engineering
	8.1 State of the Art and Trends
	8.2 Roadmap

	9 2030 Research Horizon
	References

